This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098586 #42 Aug 30 2024 02:55:59 %S A098586 2,5,13,32,78,189,457,1104,2666,6437,15541,37520,90582,218685,527953, %T A098586 1274592,3077138,7428869,17934877,43298624,104532126,252362877, %U A098586 609257881,1470878640,3551015162,8572908965,20696833093,49966575152,120629983398,291226541949 %N A098586 a(n) = (1/2) * (5*P(n+1) + P(n) - 1), where P(k) are the Pell numbers A000129. %H A098586 Colin Barker, <a href="/A098586/b098586.txt">Table of n, a(n) for n = 0..1000</a> %H A098586 Hermann Stamm-Wilbrandt, <a href="/A098586/a098586.svg">4 interlaced bisections</a> %H A098586 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,-1). %F A098586 a(n) = 3*a(n-1) - a(n-2) - a(n-3) with a(0)=2, a(1)=5, a(2)=13. - _Hermann Stamm-Wilbrandt_, Aug 26 2014 %F A098586 G.f.: (2-x)/((1-x)*(1-2*x-x^2)). - _Robert Israel_, Aug 26 2014 %F A098586 a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6), for n>5. - _Hermann Stamm-Wilbrandt_, Aug 27 2014 %F A098586 a(2*n-1) = A006451(2*n), for n>0. - _Hermann Stamm-Wilbrandt_, Aug 27 2014 %F A098586 a(2*n) = A124124(2*n+2). - _Hermann Stamm-Wilbrandt_, Aug 27 2014 %F A098586 a(n) = (-2+(5-3*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(5+3*sqrt(2)))/4. - _Colin Barker_, Mar 16 2016 %p A098586 A:= LREtools[REtoproc](a(n) = 3*a(n-1) - a(n-2) - a(n-3), a(n), {a(0)=2, a(1)=5, a(2)=13}): %p A098586 seq(A(n),n=0..100); # _Robert Israel_, Aug 26 2014 %t A098586 LinearRecurrence[{3, -1, -1}, {2, 5, 13}, 28] (* _Hermann Stamm-Wilbrandt_, Aug 26 2014 *) %t A098586 CoefficientList[Series[(2-x)/((1-x)*(1-2*x-x^2)), {x,0,50}], x] (* _G. C. Greubel_, Feb 03 2018 *) %o A098586 (PARI) Vec((2-x)/((1-x)*(1-2*x-x^2)) + O(x^50)) \\ _Colin Barker_, Mar 16 2016 %o A098586 (Magma) I:=[2,5,13]; [n le 3 select I[n] else 3*Self(n-1) - Self(n-2) - Self(n-3): n in [1..30]]; // _G. C. Greubel_, Feb 03 2018 %Y A098586 Cf. A006451, A124124. %K A098586 nonn,easy %O A098586 0,1 %A A098586 _Creighton Dement_, Oct 03 2004 %E A098586 Formula supplied by _Thomas Baruchel_, Oct 03 2004 %E A098586 More terms from _Emeric Deutsch_, Nov 17 2004