This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098599 #17 Mar 27 2024 08:59:58 %S A098599 1,1,1,-1,2,1,1,0,3,1,-1,0,2,4,1,1,0,0,5,5,1,-1,0,0,2,9,6,1,1,0,0,0,7, %T A098599 14,7,1,-1,0,0,0,2,16,20,8,1,1,0,0,0,0,9,30,27,9,1,-1,0,0,0,0,2,25,50, %U A098599 35,10,1,1,0,0,0,0,0,11,55,77,44,11,1,-1,0,0,0,0,0,2,36,105,112,54,12,1,1,0,0,0,0,0,0,13,91,182,156,65,13,1 %N A098599 Riordan array ((1+2*x)/(1+x), (1+x)). %H A098599 G. C. Greubel, <a href="/A098599/b098599.txt">Table of n, a(n) for n = 0..1325</a> %F A098599 Triangle: T(n, k) = binomial(k, n-k) + binomial(k-1, n-k-1), with T(0, 0) = 1. %F A098599 Sum_{k=0..n} T(n, k) = A098600(n) (row sums). %F A098599 T(n,k) = T(n-1,k-1) - T(n-1,k) + 2*T(n-2,k-1) + T(n-3,k-1), T(0,0)=1, T(1,0)=1, T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - _Philippe Deléham_, Jan 09 2014 %F A098599 From _G. C. Greubel_, Mar 27 2024: (Start) %F A098599 T(2*n, n) = A040000(n). %F A098599 T(2*n+1, n) = A000007(n). %F A098599 T(2*n-1, n) = A005408(n-1), n >= 1. %F A098599 Sum_{k=0..n} (-1)^k*T(n, k) = A079757(n). %F A098599 Sum_{k=0..floor(n/2)} T(n-k, k) = A098601(n). (End) %e A098599 Triangle begins as: %e A098599 1; %e A098599 1, 1; %e A098599 -1, 2, 1; %e A098599 1, 0, 3, 1; %e A098599 -1, 0, 2, 4, 1; %e A098599 1, 0, 0, 5, 5, 1; %e A098599 -1, 0, 0, 2, 9, 6, 1; %e A098599 1, 0, 0, 0, 7, 14, 7, 1; %e A098599 -1, 0, 0, 0, 2, 16, 20, 8, 1; %e A098599 1, 0, 0, 0, 0, 9, 30, 27, 9, 1; %t A098599 T[n_, k_]:= If[n==0, 1, Binomial[k,n-k] +Binomial[k-1,n-k-1]]; %t A098599 Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 27 2024 *) %o A098599 (Magma) %o A098599 A098599:= func< n,k | n eq 0 select 1 else Binomial(k, n-k) + Binomial(k-1, n-k-1) >; %o A098599 [A098599(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Mar 27 2024 %o A098599 (SageMath) %o A098599 def A098599(n,k): return 1 if n==0 else binomial(k, n-k) + binomial(k-1, n-k-1) %o A098599 flatten([[A098599(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Mar 27 2024 %Y A098599 Cf. A000007, A005408, A029635, A040000, A079757, A098601. %Y A098599 Row sums are A098600. %Y A098599 Diagonal sums are A098601. %Y A098599 Apart from signs, same as A100218. %Y A098599 Very similar to triangle A111125. %K A098599 easy,sign,tabl %O A098599 0,5 %A A098599 _Paul Barry_, Sep 17 2004