This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098602 #56 Sep 08 2022 08:45:15 %S A098602 0,12,420,14280,485112,16479540,559819260,19017375312,646030941360, %T A098602 21946034630940,745519146510612,25325704946729880,860328449042305320, %U A098602 29225841562491651012,992818284675673829100,33726595837410418538400,1145711440187278556476512 %N A098602 a(n) = A001652(n) * A046090(n). %C A098602 From _Ron Knott_, Nov 25 2013: (Start) %C A098602 a(n) = 2*r*(r+1) which is also of form s(s+1) where the s is in A053141. %C A098602 a(n) is an oblong number (A002378) which is twice another oblong number. (End) %C A098602 2*a(n)+1 and 4*a(n)+1 are both square. - _Paul Cleary_, Jun 23 2014 %H A098602 Reinhard Zumkeller, <a href="/A098602/b098602.txt">Table of n, a(n) for n = 0..255</a> %H A098602 Nikola Adžaga, Andrej Dujella, Dijana Kreso, Petra Tadić, <a href="https://www.researchgate.net/publication/323934704_On_Diophantine_m-tuples_and_Dn-sets">On Diophantine m-tuples and D(n)-sets</a>, 2018. %H A098602 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1). %F A098602 a(n) = 2*A029549(n) = 2*A001109(n)*A001109(n+1). %F A098602 a(n) = (A001653(n)^2 - 1)/2. %F A098602 a(n) = A053141(n)^2 + A011900(n)^2 - 1. %F A098602 For n>0, a(n) = A053141(2n) - 2*A001109(n-1)^2. %F A098602 For n>0, a(n) = 3*(A001542(n)^2 - A001542(n-1)^2). %F A098602 For n>0, a(n) = A053141(2n-1) + 2*(A001653(2n-1) - A001109(n-1)^2). %F A098602 a(n+1) + a(n) = 3*A001542(n+1)^2. %F A098602 a(n+1) - a(n) = A001542(2*n). %F A098602 a(n+1)*a(n) = 4*(A001109(n)^4 - A001109(n)^2) = 4*A001110(n)*(A001110(n) - 1). %F A098602 From _Ron Knott_, Nov 25 2013: (Start) %F A098602 a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3). %F A098602 G.f.: 12*x / ((1-x)*(x^2-34*x+1)). (End) %F A098602 a(n) = (-6 + (3-2*sqrt(2))*(17+12*sqrt(2))^(-n)+(3+2*sqrt(2))*(17+12*sqrt(2))^n)/16. - _Colin Barker_, Mar 02 2016 %e A098602 a(1) = 12 = 2(2*3) = 3*4, a(2) = 420 = 2(14*15) = 20*21. %t A098602 2*Table[ Floor[(Sqrt[2] + 1)^(4n + 2)/32], {n, 0, 20} ] (* _Ray Chandler_, Nov 10 2004, copied incorrect program from A029549, revised Jul 09 2015 *) %t A098602 RecurrenceTable[{a[n+3] == 35 a[n+2] - 35 a[n+1] + a[n], a[1] == 0, a[2] == 12, a[3] == 420}, a, {n, 1, 10}] (* _Ron Knott_, Nov 25 2013 *) %t A098602 LinearRecurrence[{35, -35, 1}, {0, 12, 420}, 25] (* _T. D. Noe_, Nov 25 2013 *) %t A098602 Table[(LucasL[4*n+2, 2] - 6)/16, {n,0,30}] (* _G. C. Greubel_, Jul 15 2018 *) %o A098602 (PARI) concat(0, Vec(12*x/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ _Colin Barker_, Mar 02 2016 %o A098602 (PARI) {a=1+sqrt(2); b=1-sqrt(2); Q(n) = a^n + b^n}; %o A098602 for(n=0, 30, print1(round((Q(4*n+2) - 6)/16), ", ")) \\ _G. C. Greubel_, Jul 15 2018 %o A098602 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(12*x/((1-x)*(x^2-34*x+1)))); // _G. C. Greubel_, Jul 15 2018 %Y A098602 Cf. A002378, A053141. %K A098602 nonn,easy %O A098602 0,2 %A A098602 _Charlie Marion_, Oct 26 2004 %E A098602 More terms from _Ray Chandler_, Nov 10 2004 %E A098602 Corrected by Bill Lam (bill_lam(AT)myrealbox.com), Feb 27 2006