cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098608 a(n) = 100^n.

This page as a plain text file.
%I A098608 #27 Feb 12 2025 14:22:01
%S A098608 1,100,10000,1000000,100000000,10000000000,1000000000000,
%T A098608 100000000000000,10000000000000000,1000000000000000000,
%U A098608 100000000000000000000,10000000000000000000000,1000000000000000000000000,100000000000000000000000000,10000000000000000000000000000,1000000000000000000000000000000
%N A098608 a(n) = 100^n.
%C A098608 For any base B, these are the numbers (B^2)^n written in base B. - _Philippe Deléham_, Jan 06 2008
%C A098608 Conjecture: a(n) are the only positive squares (in base 10) with digits in {0,1}. - _Manfred Boergens_, Feb 10 2025
%D A098608 Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H A098608 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H A098608 Robert Price, <a href="/A098608/a098608.txt">Comments on A098608 concerning Elementary Cellular Automata, Feb 20 2016</a>.
%H A098608 Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A098608 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (100).
%H A098608 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H A098608 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F A098608 a(n) = 100*a(n-1) = A011557(2n) = A098609(n) + 1.
%F A098608 G.f.: 1/(1-100x).
%F A098608 E.g.f.: exp(100*x). - _Stefano Spezia_, Aug 05 2024
%t A098608 LinearRecurrence[{100},{1},12] (* _Ray Chandler_, Aug 17 2015 *)
%t A098608 NestList[100#&,1,20] (* _Harvey P. Dale_, Dec 28 2018 *)
%Y A098608 Cf. A011557, A098609.
%K A098608 easy,nonn
%O A098608 0,2
%A A098608 _Henry Bottomley_, Sep 17 2004
%E A098608 a(12)-a(15) from _Stefano Spezia_, Aug 05 2024