cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098620 Consider the family of multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled edges.

This page as a plain text file.
%I A098620 #13 Jan 12 2021 18:54:30
%S A098620 1,1,4,26,257,3586,66207,1540693,43659615,1469677309,57681784820,
%T A098620 2601121752854,133170904684965,7664254746784243,491679121677763607,
%U A098620 34905596059311761907,2725010800987216480527,232643959843709167832482,21613761720729431904201734
%N A098620 Consider the family of multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled edges.
%D A098620 G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
%H A098620 Andrew Howroyd, <a href="/A098620/b098620.txt">Table of n, a(n) for n = 0..200</a>
%H A098620 G. Labelle, <a href="https://doi.org/10.1016/S0012-365X(99)00265-4">Counting enriched multigraphs according to the number of their edges (or arcs)</a>, Discrete Math., 217 (2000), 237-248.
%H A098620 G. Paquin, <a href="/A038205/a038205.pdf">Dénombrement de multigraphes enrichis</a>, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
%F A098620 E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A000110. - _Andrew Howroyd_, Jan 12 2021
%o A098620 (PARI) \\ here R(n) is A000110 as e.g.f.
%o A098620 egf1(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i, k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
%o A098620 EnrichedGnSeq(R)={my(n=serprec(R, x)-1, B=exp(x/2 + O(x*x^n))*subst(egf1(n), x, log(1+x + O(x*x^n))/2)); Vec(serlaplace(subst(B, x, R-polcoef(R,0))))}
%o A098620 R(n)={exp(exp(x + O(x*x^n))-1)}
%o A098620 EnrichedGnSeq(R(20)) \\ _Andrew Howroyd_, Jan 12 2021
%Y A098620 Cf. A000110, A014500, A098621, A098622, A098623.
%K A098620 nonn
%O A098620 0,3
%A A098620 _N. J. A. Sloane_, Oct 26 2004
%E A098620 Terms a(12) and beyond from _Andrew Howroyd_, Jan 12 2021