cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098622 Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled loops and arcs.

This page as a plain text file.
%I A098622 #20 Jan 12 2021 21:29:58
%S A098622 1,2,17,250,5465,162677,6241059,297132409,17075153860,1159545515804,
%T A098622 91501467848088,8276847825732141,848577193578286942,
%U A098622 97672164219292005480,12518933902769241287267,1774279753092963892540493,276351502436571180980604240,47046745370508674770872396843
%N A098622 Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled loops and arcs.
%D A098622 G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
%H A098622 Andrew Howroyd, <a href="/A098622/b098622.txt">Table of n, a(n) for n = 0..200</a>
%H A098622 G. Labelle, <a href="https://doi.org/10.1016/S0012-365X(99)00265-4">Counting enriched multigraphs according to the number of their edges (or arcs)</a>, Discrete Math., 217 (2000), 237-248.
%H A098622 G. Paquin, <a href="/A038205/a038205.pdf">Dénombrement de multigraphes enrichis</a>, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
%F A098622 E.g.f.: exp(-1)*Sum_{n >=0} exp(n^2*(exp(x)-1))/n!. - _Vladeta Jovovic_, Aug 24 2006
%F A098622 a(n) = Sum_{k=0..n} Stirling2(n,k)*Bell(2*k). - _Vladeta Jovovic_, Aug 24 2006
%F A098622 E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A000110. - _Andrew Howroyd_, Jan 12 2021
%o A098622 (PARI) \\ here R(n) is A000110 as e.g.f.
%o A098622 egfA014507(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, stirling(i,k,1)*polcoef(bell, 2*k))*x^i/i!) + O(x*x^n)}
%o A098622 EnrichedGdlSeq(R)={my(n=serprec(R, x)-1); Vec(serlaplace(subst(egfA014507(n), x, R-polcoef(R,0))))}
%o A098622 R(n)={exp(exp(x + O(x*x^n))-1)}
%o A098622 EnrichedGdlSeq(R(20)) \\ _Andrew Howroyd_, Jan 12 2021
%Y A098622 Cf. A000110, A014507, A098620, A098621, A098623.
%K A098622 nonn
%O A098622 0,2
%A A098622 _N. J. A. Sloane_, Oct 26 2004
%E A098622 More terms from _Vladeta Jovovic_, Aug 24 2006
%E A098622 Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, Jun 15 2007
%E A098622 Terms a(16) and beyond from _Andrew Howroyd_, Jan 12 2021