cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098623 Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled arcs.

This page as a plain text file.
%I A098623 #14 Jan 13 2021 01:20:53
%S A098623 1,1,8,109,2229,62684,2289151,104344153,5767234550,378073098155,
%T A098623 28888082263581,2536660090249102,253007765488793325,
%U A098623 28383529110762969901,3551558435250676339536,492092920443604792460905,75025155137863150912784409,12516480979952118669729618300
%N A098623 Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled arcs.
%D A098623 G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
%H A098623 Andrew Howroyd, <a href="/A098623/b098623.txt">Table of n, a(n) for n = 0..200</a>
%H A098623 G. Labelle, <a href="https://doi.org/10.1016/S0012-365X(99)00265-4">Counting enriched multigraphs according to the number of their edges (or arcs)</a>, Discrete Math., 217 (2000), 237-248.
%H A098623 G. Paquin, <a href="/A038205/a038205.pdf">Dénombrement de multigraphes enrichis</a>, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
%F A098623 E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014505 and 1 + R(x) is the e.g.f. of A000110. - _Andrew Howroyd_, Jan 12 2021
%o A098623 (PARI) \\ here R(n) is A000110 as e.g.f.
%o A098623 egfA020556(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i, k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
%o A098623 EnrichedGdSeq(R)={my(n=serprec(R, x)-1, B=subst(egfA020556(n), x, log(1+x + O(x*x^n)))); Vec(serlaplace(subst(B, x, R-polcoef(R,0))))}
%o A098623 R(n)={exp(exp(x + O(x*x^n))-1)}
%o A098623 EnrichedGdSeq(R(20)) \\ _Andrew Howroyd_, Jan 12 2021
%Y A098623 Cf. A000110, A098620, A098621, A098622.
%K A098623 nonn
%O A098623 0,3
%A A098623 _N. J. A. Sloane_, Oct 26 2004
%E A098623 Terms a(12) and beyond from _Andrew Howroyd_, Jan 12 2021