This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098679 #22 Dec 16 2016 10:52:45 %S A098679 1,2,24,55296,2781803520,994393803303936000 %N A098679 Total number of Latin cubes of order n. %C A098679 There are at least two ways to define Latin cubes - see the Preece et al. paper. - Rosemary Bailey, Nov 03 2004 %D A098679 T. Ito, Method for producing Latin squares, Publication number JP2000-28510A, Japan Patent Office. %D A098679 T. Ito, Method for producing Latin squares, JP3394467B, Patent abstracts of Japan, Japan Patent Office. %D A098679 Jia, Xiong Wei and Qin, Zhong Ping, The number of Latin cubes and their isotopy classes, J. Huazhong Univ. Sci. Tech. 27 (1999), no. 11, 104-106. MathSciNet #MR1751724. %H A098679 B. D. McKay and I. M. Wanless, <a href="http://dx.doi.org/10.1137/070693874">A census of small latin hypercubes</a>, SIAM J. Discrete Math. 22, (2008) 719-736. %H A098679 Gary L. Mullen, and Robert E. Weber, <a href="http://dx.doi.org/10.1016/0012-365X(80)90267-8">Latin cubes of order <= 5</a>, Discrete Math. 32 (1980), no. 3, 291-297. (Gives a(1)-a(5).) %H A098679 D. A. Preece, S. C. Pearce and J. R. Kerr, <a href="http://www.jstor.org/stable/2334547">Orthogonal designs for three-dimensional experiments</a>, Biometrika 60 (1973), 349-358. %F A098679 a(n) = n!*(n-1)!*(n-1)!*A098843(n). %Y A098679 Cf. A098843, A098846, A099321; A002860 (Latin squares). %Y A098679 A row of the array in A249026. %K A098679 hard,nonn,nice,more %O A098679 1,2 %A A098679 _N. J. A. Sloane_, based on correspondence from Toru Ito (t_ito(AT)mue.biglobe.ne.jp), Nov 06 2004 %E A098679 a(6) computed independently by _Brendan McKay_ and _Ian Wanless_, Dec 17 2004