This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098692 #16 Aug 21 2019 21:45:41 %S A098692 1,2,10,78,777,9800,149796,2690420,55555500,1296871224,33773107758, %T A098692 970753545580,30527491279005,1042604500906800,38430716820193144, %U A098692 1520662246114589640,64291516462902839175,2892426397164199846860,137970526315789473684210,6955460736173788715925048,369510689788116404049535299 %N A098692 Main diagonal of array in A098691. %C A098692 a(n) is the number of self-complementary n-bead primitive necklaces of n+1 colors (see Miller (1978)). - _Petros Hadjicostas_, Aug 21 2019 %H A098692 Alois P. Heinz, <a href="/A098692/b098692.txt">Table of n, a(n) for n = 1..387</a> %H A098692 H. Meyn and W. Götz, <a href="http://www.mat.univie.ac.at/~slc/opapers/s21meyn.html">Self-reciprocal polynomials over finite fields</a>, Séminaire Lotharingien de Combinatoire, B21d (1989), 8 pp. %H A098692 R. L. Miller, <a href="http://dx.doi.org/10.1016/0012-365X(78)90043-2">Necklaces, symmetries and self-reciprocal polynomials</a>, Discr. Math. 22 (1978), 25-33. %F A098692 a(n) = ((n + 1)^n - 1)/(2*n) if n = 2^s (for s >= 1), and (1/(2*n)) * Sum_{d|n, d odd} mu(d) * (n + 1)^(n/d) otherwise. - _Petros Hadjicostas_, Aug 21 2019 %p A098692 with(numtheory): %p A098692 a:= n-> `if`(n=2^ilog2(n) and n>1, (n+1)^n-1, add(mobius(d)* %p A098692 (n+1)^(n/d), d=select(x-> x::odd, divisors(n))))/(2*n): %p A098692 seq(a(n), n=1..20); # _Alois P. Heinz_, Aug 21 2019 %Y A098692 Cf. A098691. %K A098692 nonn %O A098692 1,2 %A A098692 _Ralf Stephan_, Sep 21 2004 %E A098692 More terms by _Petros Hadjicostas_, Aug 21 2019