A098699 Anti-derivative of n: or the first occurrence of n in A003415, or zero if impossible.
1, 2, 0, 0, 4, 6, 9, 10, 15, 14, 21, 0, 8, 22, 33, 26, 12, 0, 65, 34, 51, 18, 57, 0, 20, 46, 69, 27, 115, 0, 161, 30, 16, 62, 93, 0, 155, 0, 217, 45, 111, 42, 185, 82, 24, 50, 129, 0, 44, 94, 141, 63, 235, 0, 329, 75, 52, 0, 265, 70, 36, 66, 177, 122, 183, 0, 305, 0, 40, 134
Offset: 0
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 0..5000
Programs
-
Maple
ader:= proc(n) local t; n * add(t[2]/t[1], t = ifactors(n)[2]) end proc: N:= 100: # for a(0) .. a(N) V:= Array(0..N): count:= 0: for x from 1 to N^2/4 while count < 100 do v:= ader(x); if v > 0 and v <= 100 and V[v] = 0 then count:= count+1; V[v]:= x; fi; od: convert(V,list); # Robert Israel, May 29 2023
-
Mathematica
a[1] = 0; a[n_] := Block[{f = Transpose[ FactorInteger[ n]]}, If[ PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; b = Table[0, {70}]; b[[1]] = 1; Do[c = a[n]; If[c < 70 && b[[c + 1]] == 0, b[[c + 1]] = n], {n, 10^3}]; b
-
PARI
A098699(n)=for(k=1,(n\2)^2+2,A003415(k)==n&&return(k)) \\ M. F. Hasler, Apr 09 2015
-
Python
from sympy import factorint def A098699(n): if n < 2: return n+1 for m in range(1,(n**2>>2)+1): if sum((m*e//p for p,e in factorint(m).items())) == n: return m return 0 # Chai Wah Wu, Sep 12 2022
Formula
a(n) = n for { 4, 27, 3125, 823543, ... } = { p^p; p prime } = A051674.
Comments