This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098700 #42 Jan 24 2024 13:54:52 %S A098700 2,3,11,17,23,29,35,37,47,53,57,65,67,79,83,89,93,97,107,117,125,127, %T A098700 137,145,149,157,163,173,177,179,189,197,205,207,209,217,219,223,233, %U A098700 237,245,257,261,277,289,303,305,307,317,323,325,337,345,353,367,373 %N A098700 Numbers n such that x' = n has no integer solution, where x' is the arithmetic derivative of x. %C A098700 If x' = n has solutions, they occur for x <= (n/2)^2. - _T. D. Noe_, Oct 12 2004 %C A098700 The prime and composite terms are in A189483 and A189554, respectively. %C A098700 A099302(a(n)) = 0. - _Reinhard Zumkeller_, Mar 18 2014 %H A098700 T. D. Noe, <a href="/A098700/b098700.txt">Table of n, a(n) for n = 1..5000</a> %H A098700 Victor Ufnarovski and Bo Ahlander, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL6/Ufnarovski/ufnarovski.html">How to Differentiate a Number</a>, J. Integer Seqs., Vol. 6, 2003. (See p. 7.) %t A098700 a[1] = 0; a[n_] := Block[{f = Transpose[ FactorInteger[ n]]}, If[ PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; b = Table[ -1, {500}]; b[[1]] = 1; Do[c = a[n]; If[c < 500 && b[[c + 1]] == 0, b[[c + 1]] = n], {n, 10^6}]; Select[ Range[500], b[[ # ]] == 0 &] %t A098700 dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; d1=Table[dn[n], {n, 40000}]; Select[Range[400], 0==Count[d1, # ]&] %o A098700 (Haskell) %o A098700 a098700 n = a098700_list !! (n-1) %o A098700 a098700_list = filter %o A098700 (\z -> all (/= z) $ map a003415 [1 .. a002620 z]) [2..] %o A098700 -- _Reinhard Zumkeller_, Mar 18 2014 %o A098700 (PARI) list(lim)=my(v=List()); lim\=1; forfactored(n=1, lim^2, my(f=n[2],t); listput(v, n[1]*sum(i=1, #f~, f[i, 2]/f[i, 1]))); setminus([1..lim], Set(v)); \\ _Charles R Greathouse IV_, Oct 21 2021 %o A098700 (Python) %o A098700 from itertools import count, islice %o A098700 from sympy import factorint %o A098700 def A098700_gen(startvalue=2): # generator of terms >= startvalue %o A098700 return filter(lambda n:all(map(lambda m:sum((m*e//p for p,e in factorint(m).items())) != n,range(1,(n**2>>1)+1))),count(max(startvalue,2))) %o A098700 A098700_list = list(islice(A098700_gen(),30)) # _Chai Wah Wu_, Sep 12 2022 %Y A098700 Cf. A003415 (arithmetic derivative of n), A099302 (number of solutions to x' = n), A099303 (greatest x such that x' = n), A098699 (least x such that x' = n). %Y A098700 Cf. A239433 (complement), A002620. %Y A098700 Subsequence of A369464. %K A098700 nonn %O A098700 1,1 %A A098700 _Robert G. Wilson v_, Sep 21 2004 %E A098700 Corrected and extended by _T. D. Noe_, Oct 12 2004