This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098702 #8 May 31 2018 21:38:06 %S A098702 0,0,0,0,0,0,1,1,3,10,25,95,365,1432,5799,24092,102413,445363,1991320 %N A098702 Number of self-polar configurations of type (n_3). %H A098702 A. Betten, G. Brinkmann and T. Pisanski, <a href="https://doi.org/10.1016/S0166-218X(99)00143-2">Counting symmetric configurations v_3</a>, Discrete Appl. Math., 99 (2000), 331-338. %H A098702 M. Boben et al., <a href="https://doi.org/10.1007/s00454-005-1224-9">Small triangle-free configurations of points and lines</a>, Discrete Comput. Geom., 35 (2006), 405-427. %H A098702 T. Pisanski, M. Boben, D. MaruĊĦic, A. Orbanic, A. Graovac, <a href="https://doi.org/10.1016/S0012-365X(03)00110-9">The 10-cages and derived configurations</a>, Discrete Math. 275 (2004), 265-276. %e A098702 Example: the Fano plane is the only 7_3 configuration and it is self-polar. %Y A098702 Cf. A001403, A023994. %K A098702 nonn,nice,hard %O A098702 1,9 %A A098702 _N. J. A. Sloane_, Nov 05 2004 %E A098702 a(1)-a(18) from the Betten, Brinkmann and Pisanski article. %E A098702 a(19) from the Pisanski et al. article.