cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098704 Decimal form of the binary numbers 10, 100010, 1000100010, 10001000100010, 100010001000100010,...

This page as a plain text file.
%I A098704 #37 Aug 30 2024 02:56:11
%S A098704 2,34,546,8738,139810,2236962,35791394,572662306,9162596898,
%T A098704 146601550370,2345624805922,37529996894754,600479950316066,
%U A098704 9607679205057058,153722867280912930,2459565876494606882
%N A098704 Decimal form of the binary numbers 10, 100010, 1000100010, 10001000100010, 100010001000100010,...
%C A098704 Decimal form of the hexadecimal numbers 2, 22, 222, 2222, 22222, 222222, ...; e.g., 2*16^0 + 2*16^1 = 2 + 32 = 34. - _Zerinvary Lajos_, Feb 01 2007
%C A098704 For n>0: A131852(a(n+1))=n and ABS(A131852(m))<n for m<a(n+1); a(n)=2*A131865(n-2). - _Reinhard Zumkeller_, Jul 22 2007
%C A098704 Third quadrisection of A115451. - _Klaus Purath_, Mar 14 2021
%H A098704 Harvey P. Dale, <a href="/A098704/b098704.txt">Table of n, a(n) for n = 2..832</a>
%H A098704 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (17,-16).
%F A098704 lim_{n -> infinity} a(n)/a(n-k) = 2^(4*(n-k)).
%F A098704 2*Sum_{k=0..n} 16^k = 2*(16^(n+1) - 1)/15.
%F A098704 From _Klaus Purath_, Mar 14 2021: (Start)
%F A098704 a(n) = (2^(4*n-3)-2)/15.
%F A098704 a(n) = 17*a(n-1) - 16*a(n-2).
%F A098704 a(n) = 16*a(n-1) + 2.
%F A098704 a(n) = 2*16^(n-2) + a(n-1).
%F A098704 a(n) = 2*A131865(n-2). (End)
%t A098704 s=0;lst={};Do[s+=2^n;AppendTo[lst, s], {n, 1, 2*5!, 4}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 07 2008 *)
%t A098704 FromDigits[#,2]&/@Table[Join[PadRight[{},4n,{1,0,0,0}],{1,0}],{n,0,20}] (* _Harvey P. Dale_, Apr 06 2020 *)
%o A098704 (PARI) for(n=0,20,print(2*sum(k=0,n,2^(4*k))))
%o A098704 for(k=0,20,print(2*(1-16^(k+1))/-15))
%K A098704 nonn,base,easy
%O A098704 2,1
%A A098704 _Simone Severini_, Oct 26 2004
%E A098704 More terms from _Ray Chandler_, Nov 02 2004
%E A098704 More terms from _Vladimir Joseph Stephan Orlovsky_, Nov 07 2008