This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098790 #60 Jan 05 2025 19:51:37 %S A098790 1,2,6,15,37,90,218,527,1273,3074,7422,17919,43261,104442,252146, %T A098790 608735,1469617,3547970,8565558,20679087,49923733,120526554,290976842, %U A098790 702480239,1695937321,4094354882,9884647086,23863649055,57611945197 %N A098790 a(n) = 2*a(n-1) + a(n-2) + 1, a(0) = 1, a(1) = 2. %C A098790 Previous name was: a(n) = A048739(n) - A000129(n). %C A098790 Partial sums of Pell numbers A000129 except omit next-to-last Pell number. E.g., 37 = 0+1+2+5+12+29 - 12. %D A098790 M. Bicknell-Johnson and G. E. Bergum, The Generalized Fibonacci Numbers {C(n)}, C(n)=C(n-1)+C(n-2)+K, Applications of Fibonacci Numbers, 1986, pp. 193-205. %H A098790 Vincenzo Librandi, <a href="/A098790/b098790.txt">Table of n, a(n) for n = 0..1000</a> %H A098790 M. Bicknell, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/13-4/bicknell.pdf">A Primer on the Pell Sequence and related sequences</a>, Fibonacci Quarterly, Vol. 13, No. 4, 1975, pp. 345-349. %H A098790 A. F. Horadam, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/5-5/horadam.pdf">Special properties of the sequence W_n(a,b; p,q)</a>, Fib. Quart., 5.5 (1967), 424-434. %H A098790 Hermann Stamm-Wilbrandt, <a href="/A098790/a098790.svg">4 interlaced bisections</a> %H A098790 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3, -1, -1). %F A098790 a(n) = 2*a(n-1) + a(n-2) + 1, a(0) = 1, a(1) = 2. %F A098790 G.f.: (x^2-x+1)/((1-x)(1-2x-x^2)). %F A098790 a(n+1) = - A024537(n+1) + 2*A048739(n+1) - 2*A048739(n). %F A098790 a(n) = - A024537(n) + A052542(n+1). %F A098790 Partial sums of A074323. - _Paul Barry_, Mar 11 2007 %F A098790 a(n) = (sqrt(2)+1)^n*(3/4+sqrt(2)/4)+(sqrt(2)-1)^n*(3/4-sqrt(2)/4)*(-1)^n-1/2; - _Paul Barry_, Mar 11 2007 %F A098790 a(0)=1, a(1)=2, a(2)=6, a(n)=3*a(n-1)-a(n-2)-a(n-3). [_Harvey P. Dale_, Oct 15 2011] %F A098790 a(2*n) = A124124(2*n+1). - _Hermann Stamm-Wilbrandt_, Aug 03 2014 %F A098790 a(2*n+1) = A006451(2*n+1). - _Hermann Stamm-Wilbrandt_, Aug 26 2014 %F A098790 a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6), for n>5. - _Hermann Stamm-Wilbrandt_, Aug 26 2014 %F A098790 2*a(n) = A135532(n+1)-1. - _R. J. Mathar_, Jan 13 2023 %t A098790 a[0] = 1; a[1] = 2; a[n_] := a[n] = 2a[n - 1] + a[n - 2] + 1; Table[ a[n], {n, 0, 28}] (* _Robert G. Wilson v_, Nov 04 2004 *) %t A098790 LinearRecurrence[{3,-1,-1},{1,2,6},31] (* _Harvey P. Dale_, Oct 15 2011 *) %t A098790 CoefficientList[Series[(x^2 - x + 1)/((1 - x) (1 - 2 x - x^2)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Aug 14 2014 *) %Y A098790 Cf. A006451, A000129, A048739, A124124, A024537, A074323, A052542. %K A098790 nonn %O A098790 0,2 %A A098790 _Creighton Dement_, Oct 30 2004 %E A098790 More terms from _Robert G. Wilson v_, Nov 04 2004 %E A098790 Definition edited by _N. J. A. Sloane_, Aug 03 2014 %E A098790 New name from existing formula by _Joerg Arndt_, Aug 13 2014