This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098834 #15 Mar 13 2025 11:00:29 %S A098834 4,22,121,202,454,535,636,666,1111,1881,3663,7227,7447,9229,10201, %T A098834 17271,22522,24142,28182,33633,38283,45054,45454,46664,47074,50305, %U A098834 51115,51315,54645,55055,55955,72627,81418,82628,83038,83938,90409,95359,96169,164461 %N A098834 Palindromic Smith numbers. %H A098834 Donovan Johnson, <a href="/A098834/b098834.txt">Table of n, a(n) for n = 1..10000</a> %H A098834 Shyam Sunder Gupta, <a href="https://doi.org/10.1007/978-981-97-2465-9_4">Smith Numbers</a>, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 4, 127-157. %e A098834 a(3) = 121 because 121 is a Smith number as well as a palindromic number. %t A098834 d[n_] := IntegerDigits[n]; tr[n_] := Transpose[FactorInteger[n]]; Select[Range[2, 1.7*10^5], !PrimeQ[#] && Reverse[x=d[#]] == x && Total[x] == Total[d@tr[#][[1]]*tr[#][[2]], 2]&] (* _Jayanta Basu_, Jun 04 2013 *) %o A098834 (Python) %o A098834 from sympy import factorint %o A098834 from itertools import product %o A098834 def sd(n): return sum(map(int, str(n))) %o A098834 def smith(n): %o A098834 f = factorint(n) %o A098834 return sum(f[p] for p in f) > 1 and sd(n) == sum(sd(p)*f[p] for p in f) %o A098834 def palsto(limit): %o A098834 yield from range(min(limit, 9)+1) %o A098834 midrange = [[""], [str(i) for i in range(10)]] %o A098834 for digs in range(2, 10**len(str(limit))): %o A098834 for p in product("0123456789", repeat=digs//2): %o A098834 left = "".join(p) %o A098834 if left[0] == '0': continue %o A098834 for middle in midrange[digs%2]: %o A098834 out = int(left + middle + left[::-1]) %o A098834 if out > limit: return %o A098834 yield out %o A098834 print(list(filter(smith, palsto(164461)))) # _Michael S. Branicky_, Apr 22 2021 %Y A098834 Cf. A006753. %Y A098834 Subsequence of A104171. Supersequence of A104166. %K A098834 base,nonn %O A098834 1,1 %A A098834 _Shyam Sunder Gupta_, Oct 10 2004