cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098843 Number of reduced Latin cubes of order n.

This page as a plain text file.
%I A098843 #15 Jul 01 2025 16:05:13
%S A098843 1,1,1,64,40246,95909896152
%N A098843 Number of reduced Latin cubes of order n.
%C A098843 There are at least two ways to define Latin cubes - see the Preece et al. paper. - Rosemary Bailey, Nov 03 2004
%D A098843 T. Ito, Method for producing Latin squares, Publication number JP2000-28510A, Japan Patent Office.
%D A098843 T. Ito, Method for producing Latin squares, JP3394467B, Patent abstracts of Japan,Japan Patent Office.
%D A098843 Jia, Xiong Wei and Qin, Zhong Ping, The number of Latin cubes and their isotopy classes, J. Huazhong Univ. Sci. Tech. 27 (1999), no. 11, 104-106. MathSciNet #MR1751724.
%H A098843 B. D. McKay and I. M. Wanless, <a href="http://dx.doi.org/10.1137/070693874">A census of small latin hypercubes</a>, SIAM J. Discrete Math. 22, (2008) 719-736.
%H A098843 Gary L. Mullen, and Robert E. Weber, <a href="http://dx.doi.org/10.1016/0012-365X(80)90267-8">Latin cubes of order <= 5</a>, Discrete Math. 32 (1980), no. 3, 291-297. (Gives a(1)-a(5).)
%H A098843 D. A. Preece, S. C. Pearce and J. R. Kerr, <a href="http://www.jstor.org/stable/2334547">Orthogonal designs for three-dimensional experiments</a>, Biometrika 60 (1973), 349-358.
%Y A098843 Cf. A098846 (isomorphism classes), A098679 (total number), A099321 (isotopy classes).
%K A098843 hard,nonn,nice,more
%O A098843 1,4
%A A098843 _N. J. A. Sloane_, based on correspondence from Toru Ito (t_ito(AT)mue.biglobe.ne.jp), Nov 03 2004
%E A098843 a(6) computed independently by _Brendan McKay_ and _Ian Wanless_, Dec 17 2004