cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098848 a(n) = n*(n + 14).

This page as a plain text file.
%I A098848 #38 Jan 15 2021 07:37:58
%S A098848 0,15,32,51,72,95,120,147,176,207,240,275,312,351,392,435,480,527,576,
%T A098848 627,680,735,792,851,912,975,1040,1107,1176,1247,1320,1395,1472,1551,
%U A098848 1632,1715,1800,1887,1976,2067,2160,2255,2352,2451,2552,2655,2760,2867
%N A098848 a(n) = n*(n + 14).
%H A098848 G. C. Greubel, <a href="/A098848/b098848.txt">Table of n, a(n) for n = 0..1000</a>
%H A098848 Felix P. Muga II, <a href="https://www.researchgate.net/publication/267327689_Extending_the_Golden_Ratio_and_the_Binet-de_Moivre_Formula">Extending the Golden Ratio and the Binet-de Moivre Formula</a>, Preprint on ResearchGate, March 2014.
%H A098848 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A098848 a(n) = (n+7)^2 - 7^2 = n*(n + 14), n>=0.
%F A098848 G.f.: x*(15 - 13*x)/(1-x)^3.
%F A098848 a(n) = 2*n + a(n-1) + 13 (with a(0)=0). - _Vincenzo Librandi_, Nov 16 2010
%F A098848 Sum_{n>=1} 1/a(n) = 1171733/5045040 = 0.2322544518... via Sum_{n>=0} 1/((n+x)(n+y)) = (psi(x)-psi(y))/(x-y). - _R. J. Mathar_, Jul 14 2012
%F A098848 From _G. C. Greubel_, Jul 29 2016: (Start)
%F A098848 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
%F A098848 E.g.f.: x*(15 + x)*exp(x). (End)
%F A098848 Sum_{n>=1} (-1)^(n+1)/a(n) = 237371/5045040. - _Amiram Eldar_, Jan 15 2021
%t A098848 Table[ n(n + 14), {n, 0, 50}] (* _Robert G. Wilson v_, Jul 14 2005 *)
%t A098848 LinearRecurrence[{3, -3, 1}, {0, 15, 32}, 50] (* _G. C. Greubel_, Jul 29 2016 *)
%o A098848 (PARI) a(n)=n*(n+14) \\ _Charles R Greathouse IV_, Sep 24 2015
%Y A098848 Cf. A098832.
%Y A098848 a(n-7), n>=8, seventh column (used for the n=7 series of the hydrogen atom) of triangle A120070.
%K A098848 nonn,easy
%O A098848 0,2
%A A098848 Eugene McDonnell (eemcd(AT)mac.com), Nov 04 2004
%E A098848 More terms from _Robert G. Wilson v_, Jul 14 2005