cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098859 Number of partitions of n into parts each of which is used a different number of times.

This page as a plain text file.
%I A098859 #90 Jan 08 2025 10:09:52
%S A098859 1,1,2,2,4,5,7,10,13,15,21,28,31,45,55,62,82,105,116,153,172,208,251,
%T A098859 312,341,431,492,588,676,826,905,1120,1249,1475,1676,2003,2187,2625,
%U A098859 2922,3409,3810,4481,4910,5792,6382,7407,8186,9527,10434
%N A098859 Number of partitions of n into parts each of which is used a different number of times.
%C A098859 Fill, Janson and Ward refer to these partitions as Wilf partitions. - _Peter Luschny_, Jun 04 2012
%H A098859 Simon Langowski and Mark Daniel Ward, <a href="/A098859/b098859.txt">Table of n, a(n) for n = 0..2000</a> (terms 0..300 from M. D. Ward, 301..700 from Maciej Ireneusz Wilczynski)
%H A098859 James Allen Fill, Svante Janson and Mark Daniel Ward, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i2p18">Partitions with Distinct Multiplicities of Parts: On An "Unsolved Problem" Posed By Herbert S. Wilf</a>, The Electronic Journal of Combinatorics, Volume 19, Issue 2 (2012)
%H A098859 Daniel Kane and Robert C. Rhoades, <a href="https://web.archive.org/web/20160809023551/http://math.stanford.edu/~rhoades/FILES/wilf.pdf">Asymptotics for Wilf's partitions with distinct multiplicities</a>
%H A098859 Martin Klazar, <a href="http://arxiv.org/abs/1808.08449">What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I</a>, arXiv:1808.08449 [math.CO], 2018.
%H A098859 Simon Langowski, <a href="https://github.com/SimonLangowski/WilfPartition">Program to compute Wilf Partitions</a>, 2018
%H A098859 Stephan Wagner, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i4p13">The Number of Fixed Points of Wilf's Partition Involution</a>, The Electronic Journal of Combinatorics, 20(4) (2013), #P13.
%H A098859 Doron Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/dmp.html">Using generatingfunctionology to enumerate distinct-multiplicity partitions</a>; <a href="/A098859/a098859.pdf">Local copy</a> [Pdf file only, no active links]
%F A098859 log(a(n)) ~ N*log(N) where N = (6*n)^(1/3)  (see Fill, Janson and Ward). - _Peter Luschny_, Jun 04 2012
%e A098859 a(6)=7 because 6= 4+1+1= 3+3= 3+1+1+1= 2+2+2= 2+1+1+1+1= 1+1+1+1+1+1. Four unrestricted partitions of 6 are not counted by a(6): 5+1, 4+2, 3+2+1 because at least two different summands are each used once; 2+2+1+1 because each summand is used twice.
%e A098859 From _Gus Wiseman_, Apr 19 2019: (Start)
%e A098859 The a(1) = 1 through a(9) = 15 partitions are the following. The Heinz numbers of these partitions are given by A130091.
%e A098859   1   2    3     4      5       6        7         8          9
%e A098859       11   111   22     221     33       322       44         333
%e A098859                  211    311     222      331       332        441
%e A098859                  1111   2111    411      511       422        522
%e A098859                         11111   3111     2221      611        711
%e A098859                                 21111    4111      2222       3222
%e A098859                                 111111   22111     5111       6111
%e A098859                                          31111     22211      22221
%e A098859                                          211111    41111      33111
%e A098859                                          1111111   221111     51111
%e A098859                                                    311111     411111
%e A098859                                                    2111111    2211111
%e A098859                                                    11111111   3111111
%e A098859                                                               21111111
%e A098859                                                               111111111
%e A098859 (End)
%t A098859 a[n_] := Length[sp = Split /@ IntegerPartitions[n]] - Count[sp, {___List, b_List, ___List, c_List, ___List} /; Length[b] == Length[c]]; Table[a[n], {n, 0, 48}] (* _Jean-François Alcover_, Jan 17 2013 *)
%o A098859 (Haskell)
%o A098859 a098859 = p 0 [] 1 where
%o A098859    p m ms _      0 = if m `elem` ms then 0 else 1
%o A098859    p m ms k x
%o A098859      | x < k       = 0
%o A098859      | m == 0      = p 1 ms k (x - k) + p 0 ms (k + 1) x
%o A098859      | m `elem` ms = p (m + 1) ms k (x - k)
%o A098859      | otherwise   = p (m + 1) ms k (x - k) + p 0 (m : ms) (k + 1) x
%o A098859 -- _Reinhard Zumkeller_, Dec 27 2012
%o A098859 (PARI) a(n)={((r,k,b,w)->if(!k||!r, if(r,0,1), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b, 1<<m), w+m)))))(n,n,1,0)} \\ _Andrew Howroyd_, Aug 31 2019
%Y A098859 Row sums of A182485.
%Y A098859 Cf. A100471, A100881, A105637, A211858, A211859, A211860, A211861, A211862, A211863, A242882.
%Y A098859 Cf. A047966 (each part appears the same number of times), A090858, A116608, A130091, A325242.
%K A098859 nonn,nice
%O A098859 0,3
%A A098859 _David S. Newman_, Oct 11 2004
%E A098859 Corrected and extended by _Vladeta Jovovic_, Oct 22 2004