This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098859 #90 Jan 08 2025 10:09:52 %S A098859 1,1,2,2,4,5,7,10,13,15,21,28,31,45,55,62,82,105,116,153,172,208,251, %T A098859 312,341,431,492,588,676,826,905,1120,1249,1475,1676,2003,2187,2625, %U A098859 2922,3409,3810,4481,4910,5792,6382,7407,8186,9527,10434 %N A098859 Number of partitions of n into parts each of which is used a different number of times. %C A098859 Fill, Janson and Ward refer to these partitions as Wilf partitions. - _Peter Luschny_, Jun 04 2012 %H A098859 Simon Langowski and Mark Daniel Ward, <a href="/A098859/b098859.txt">Table of n, a(n) for n = 0..2000</a> (terms 0..300 from M. D. Ward, 301..700 from Maciej Ireneusz Wilczynski) %H A098859 James Allen Fill, Svante Janson and Mark Daniel Ward, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i2p18">Partitions with Distinct Multiplicities of Parts: On An "Unsolved Problem" Posed By Herbert S. Wilf</a>, The Electronic Journal of Combinatorics, Volume 19, Issue 2 (2012) %H A098859 Daniel Kane and Robert C. Rhoades, <a href="https://web.archive.org/web/20160809023551/http://math.stanford.edu/~rhoades/FILES/wilf.pdf">Asymptotics for Wilf's partitions with distinct multiplicities</a> %H A098859 Martin Klazar, <a href="http://arxiv.org/abs/1808.08449">What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I</a>, arXiv:1808.08449 [math.CO], 2018. %H A098859 Simon Langowski, <a href="https://github.com/SimonLangowski/WilfPartition">Program to compute Wilf Partitions</a>, 2018 %H A098859 Stephan Wagner, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i4p13">The Number of Fixed Points of Wilf's Partition Involution</a>, The Electronic Journal of Combinatorics, 20(4) (2013), #P13. %H A098859 Doron Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/dmp.html">Using generatingfunctionology to enumerate distinct-multiplicity partitions</a>; <a href="/A098859/a098859.pdf">Local copy</a> [Pdf file only, no active links] %F A098859 log(a(n)) ~ N*log(N) where N = (6*n)^(1/3) (see Fill, Janson and Ward). - _Peter Luschny_, Jun 04 2012 %e A098859 a(6)=7 because 6= 4+1+1= 3+3= 3+1+1+1= 2+2+2= 2+1+1+1+1= 1+1+1+1+1+1. Four unrestricted partitions of 6 are not counted by a(6): 5+1, 4+2, 3+2+1 because at least two different summands are each used once; 2+2+1+1 because each summand is used twice. %e A098859 From _Gus Wiseman_, Apr 19 2019: (Start) %e A098859 The a(1) = 1 through a(9) = 15 partitions are the following. The Heinz numbers of these partitions are given by A130091. %e A098859 1 2 3 4 5 6 7 8 9 %e A098859 11 111 22 221 33 322 44 333 %e A098859 211 311 222 331 332 441 %e A098859 1111 2111 411 511 422 522 %e A098859 11111 3111 2221 611 711 %e A098859 21111 4111 2222 3222 %e A098859 111111 22111 5111 6111 %e A098859 31111 22211 22221 %e A098859 211111 41111 33111 %e A098859 1111111 221111 51111 %e A098859 311111 411111 %e A098859 2111111 2211111 %e A098859 11111111 3111111 %e A098859 21111111 %e A098859 111111111 %e A098859 (End) %t A098859 a[n_] := Length[sp = Split /@ IntegerPartitions[n]] - Count[sp, {___List, b_List, ___List, c_List, ___List} /; Length[b] == Length[c]]; Table[a[n], {n, 0, 48}] (* _Jean-François Alcover_, Jan 17 2013 *) %o A098859 (Haskell) %o A098859 a098859 = p 0 [] 1 where %o A098859 p m ms _ 0 = if m `elem` ms then 0 else 1 %o A098859 p m ms k x %o A098859 | x < k = 0 %o A098859 | m == 0 = p 1 ms k (x - k) + p 0 ms (k + 1) x %o A098859 | m `elem` ms = p (m + 1) ms k (x - k) %o A098859 | otherwise = p (m + 1) ms k (x - k) + p 0 (m : ms) (k + 1) x %o A098859 -- _Reinhard Zumkeller_, Dec 27 2012 %o A098859 (PARI) a(n)={((r,k,b,w)->if(!k||!r, if(r,0,1), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b, 1<<m), w+m)))))(n,n,1,0)} \\ _Andrew Howroyd_, Aug 31 2019 %Y A098859 Row sums of A182485. %Y A098859 Cf. A100471, A100881, A105637, A211858, A211859, A211860, A211861, A211862, A211863, A242882. %Y A098859 Cf. A047966 (each part appears the same number of times), A090858, A116608, A130091, A325242. %K A098859 nonn,nice %O A098859 0,3 %A A098859 _David S. Newman_, Oct 11 2004 %E A098859 Corrected and extended by _Vladeta Jovovic_, Oct 22 2004