cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098875 Decimal expansion of Sum_{n>0} n/exp(n).

Original entry on oeis.org

9, 2, 0, 6, 7, 3, 5, 9, 4, 2, 0, 7, 7, 9, 2, 3, 1, 8, 9, 4, 5, 4, 1, 3, 5, 2, 2, 7, 1, 6, 4, 9, 9, 6, 0, 2, 8, 8, 1, 6, 5, 5, 6, 2, 6, 6, 5, 0, 5, 5, 1, 1, 5, 2, 3, 5, 3, 9, 6, 0, 4, 0, 9, 7, 2, 2, 0, 4, 7, 1, 9, 7, 4, 6, 5, 0, 2, 4, 4, 5, 6, 8, 6, 7, 3, 6, 9, 9, 7, 3, 2, 8, 3, 4, 3, 4, 7, 9, 4, 7, 2, 5, 3, 9, 7
Offset: 0

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 03 2004

Keywords

Comments

The expression generating this constant is a first degree Eulerian polynomial, in the "variable" e, with coefficient {1}, generated from sum_{n>=0} n^m/e^n, with m=1. See A008292. It approximates m!. - Richard R. Forberg, Feb 15 2015
See A255169 for the second degree polynomial and value.

Examples

			0.9206735942077923189454135227164996028816556266505511523539604097220...
		

Crossrefs

Programs

  • Maple
    g:=x->sum(n/exp(n),n=1..x); evalf[110](g(1500)); evalf[110](g(4000));
  • Mathematica
    RealDigits[E/(E-1)^2, 10, 105][[1]] (* Jean-François Alcover, Jan 28 2014 *)
  • PARI
    1+sumalt(n=1,bernreal(2*n)*(1-2*n)/(2*n)!) \\ Gleb Koloskov, Jul 12 2021

Formula

Equals exp(1)/(exp(1)-1)^2.
From Gleb Koloskov, Jul 12 2021: (Start)
Equals (1/2)/(cosh(1)-1).
Equals 1+Sum_{n>0} B(2*n)*(1-2*n)/(2*n)! = 1+Sum_{n>0} (A027641(2*n)/A027642(2*n))*A165747(n)/A010050(n).
Equals LambertW(x)*LambertW(-1,x), where x = (1/(1-e))*exp(1/(1-e)) = -A073333*exp(-A073333). (End)