cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098909 Triangle T(n,k) of numbers of connected (unicyclic) graphs with unique cycle of length k (3<=k<=n), on n labeled nodes.

This page as a plain text file.
%I A098909 #18 Sep 08 2022 08:45:15
%S A098909 1,12,3,150,60,12,2160,1080,360,60,36015,20580,8820,2520,360,688128,
%T A098909 430080,215040,80640,20160,2520,14880348,9920232,5511240,2449440,
%U A098909 816480,181440,20160,360000000,252000000,151200000,75600000,30240000,9072000
%N A098909 Triangle T(n,k) of numbers of connected (unicyclic) graphs with unique cycle of length k (3<=k<=n), on n labeled nodes.
%H A098909 G. C. Greubel, <a href="/A098909/b098909.txt">Rows n = 3..100 of triangle, flattened</a>
%F A098909 T(n, k) = (n-1)!*n^(n-k)/(2*(n-k)!).
%F A098909 E.g.f.: -(2*log(1+x*LambertW(-y))-2*x*LambertW(-y)+x^2*LambertW(-y)^2)/4.
%e A098909 Triangle begins as:
%e A098909       1;
%e A098909      12,     3;
%e A098909     150,    60,   12;
%e A098909    2160,  1080,  360,   60;
%e A098909   36015, 20580, 8820, 2520, 360;
%e A098909   ...
%t A098909 f[list_] := Select[list, #>0&]; t = Sum[n^(n-1)x^n/n!, {n, 1, 20}]; Map[f,Drop[Transpose[Table[Range[0,8]! CoefficientList[Series[t^n/(2n), {x, 0, 8}], x], {n, 3, 8}]], 3]] (* _Geoffrey Critzer_, Oct 23 2011 *)
%t A098909 Table[k!*Binomial[n,k]*n^(n-k-1)/2, {n,3,12}, {k,3,n}]//Flatten (* _G. C. Greubel_, May 16 2019 *)
%o A098909 (PARI) {T(n,k) = k!*binomial(n,k)*n^(n-k-1)/2 }; \\ _G. C. Greubel_, May 16 2019
%o A098909 (Magma) [[Factorial(k)*Binomial(n,k)*n^(n-k-1)/2: k in [3..n]]: n in [3..12]]; // _G. C. Greubel_, May 16 2019
%o A098909 (Sage) [[factorial(k)*binomial(n,k)*n^(n-k-1)/2 for k in (3..n)] for n in (3..12)] # _G. C. Greubel_, May 16 2019
%o A098909 (GAP) Flat(List([3..12], n-> List([3..n], k-> Factorial(k)*Binomial(n,k) *n^(n-k-1)/2 ))); # _G. C. Greubel_, May 16 2019
%Y A098909 Row sums: A057500, columns: A053507, A065889.
%K A098909 easy,nonn,tabl
%O A098909 3,2
%A A098909 _Vladeta Jovovic_, Oct 15 2004