cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098955 Numbers with property that the last digit is the length of the number (written in base 10).

This page as a plain text file.
%I A098955 #25 Aug 05 2022 07:45:17
%S A098955 1,12,22,32,42,52,62,72,82,92,103,113,123,133,143,153,163,173,183,193,
%T A098955 203,213,223,233,243,253,263,273,283,293,303,313,323,333,343,353,363,
%U A098955 373,383,393,403,413,423,433,443,453,463,473,483,493,503
%N A098955 Numbers with property that the last digit is the length of the number (written in base 10).
%C A098955 Otherwise said: list of n-digit numbers with n+1 appended, for n=0,1,2,... The sequence is obviously finite, since the largest possible digit and thus maximal possible length of a term is 9. The formula confirms that the last and largest term is a(10^8)=999999999. - _M. F. Hasler_, Jan 06 2013
%H A098955 Robert Israel, <a href="/A098955/b098955.txt">Table of n, a(n) for n = 1..10000</a>
%F A098955 a(n) = 10(n-1)+2 = 10n-8 for n=2,...,10,
%F A098955 a(n) = 10(n-1)+3 = 10n-7 for n=11,...,100,
%F A098955 a(n) = 10(n-1)+4 = 10n-6 for n=101,...,1000, and so on,
%F A098955 a(n) = 10(n-1)+k+1 = 10n-(9-k) for 10^(k-1) < n <= 10^k, up to
%F A098955 a(n) = 10(n-1)+9 = 10n-1 for n=10^7+1,...,10^8. - _M. F. Hasler_, Jan 06 2013
%p A098955 1,seq(seq(10*(n-1)+d,n=10^(d-2)+1..10^(d-1)),d=2..4); # _Robert Israel_, Aug 17 2018
%o A098955 (PARI) A098955(n)=n*10-9+#Str(n-1)-(n==1)  \\ _M. F. Hasler_, Jan 06 2013
%o A098955 (Python)
%o A098955 def a(n): s = str(n); return int(s + str(len(s) + int(n != 0)))
%o A098955 print([a(n) for n in range(51)]) # _Michael S. Branicky_, Aug 04 2022
%K A098955 base,easy,nonn,fini
%O A098955 1,2
%A A098955 _Eric Angelini_, Oct 21 2004