This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098966 #6 Jul 27 2017 03:41:25 %S A098966 1,1,3,1,7,5,1,15,21,7,1,31,73,43,9,1,63,233,215,73,11,1,127,717,951, %T A098966 497,111,13,1,255,2173,3971,2865,959,157,15,1,511,6545,16171,15161, %U A098966 6863,1657,211,17,1,1023,19665,65167,77369,44391,14521,2631,273,19 %N A098966 Number of (k+1)-tuples of integers modulo n (x_1,...,x_k,s) such that at least one subset of the x_i sums to s mod n. In other words, n^k times the expected number of distinct subset sums mod n of k integers mod n chosen uniformly at random. Read by antidiagonals, i.e., with entries in the order (n,k)=(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),... %C A098966 a(n,k) <= n^(k+1). %F A098966 a(n, 1) = 2*n - 1; %F A098966 a(n, 2) = 4*n^2 - 6*n + 3; %F A098966 a(n, 3) = 8*n^3 - 28*n^2 + 44*n - 23, n odd; %F A098966 a(n, 3) = 8*n^3 - 28*n^2 + 44*n - 25, n even; %F A098966 a(1, k) = 1; %F A098966 a(2, k) = 2^(k+1) - 1; %F A098966 a(3, k) = 3^(k+1) - 2*k - 2. %e A098966 Table begins %e A098966 1, 1, 1, 1, 1, ... %e A098966 3, 7, 15, 31, 63, ... %e A098966 5, 21, 73, 233, 717, ... %e A098966 7, 43, 215, 951, 3971, ... %e A098966 9, 73, 497, 2865, 15161, ... %e A098966 ... %t A098966 <<DiscreteMath`Combinatorica`; %t A098966 SubsetSums[l_]:=Plus@@#&/@Subsets[l]; %t A098966 NumSumsModN[l_, n_]:=Length[Union[Mod[SubsetSums[l], n]]]; %t A098966 a[1, k_]:=1; %t A098966 a[n_, k_]:=Plus@@Table[NumSumsModN[IntegerDigits[x, n, k], n], {x, 0, n^k-1}]; %t A098966 Flatten[Table[a[n, j-n], {j, 1, 10}, {n, 1, j-1}]] %Y A098966 First column is A005408; second column is A054569; second row is A000225. %K A098966 nonn,tabl %O A098966 1,3 %A A098966 Andrew Childs (amchilds(AT)caltech.edu) and Wim van Dam (vandam(AT)cs.ucsb.edu), Oct 13 2004