This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098983 #37 Feb 01 2025 11:09:22 %S A098983 0,0,0,1,2,2,2,2,4,3,3,1,4,4,4,3,5,4,6,4,6,4,6,3,9,5,7,3,7,4,7,4,8,7, %T A098983 9,4,10,6,8,6,10,6,11,7,12,8,11,5,13,8,11,6,11,8,13,6,10,7,13,6,16,7, %U A098983 13,8,16,7,14,7,13,10,15,7,18,10,17,10,18,9,17,8,17,12,17,8,21,12,15,9,18,13 %N A098983 Number of ways of writing n as a sum of a prime and a squarefree number. %C A098983 From a posting by Hugh Montgomery to the Number Theory mailing list, Oct 05 2004: "Estermann, JLMS (1931), established an asymptotic formula for a(n). Page, PLMS (1935), gave a quantitative version of this, with an error term roughly (log n)^5 smaller than the main term. Walfisz, Zur additiven Zahlentheorie II, Math. Z. 40 (1936), 592-607, established what we know today as the "Siegel-Walfisz theorem" in a series of lemmas and used this new tool to give the formula for a(n) with an error term that is smaller by a factor (log n)^c for any c." %H A098983 T. D. Noe, <a href="/A098983/b098983.txt">Table of n, a(n) for n = 0..10000</a> %H A098983 Adrian Dudek, <a href="http://arxiv.org/abs/1410.7459">On the Sum of a Prime and a Square-free Number</a>, arXiv:1410.7459 [math.NT], 2014. %H A098983 T. Estermann, <a href="https://doi.org/10.1112/jlms/s1-6.3.219">On the representations of a number as the sum of a prime and a quadratfrei number</a>, J. London Math. Soc., S1-6(3):219, 1931. %H A098983 Forrest J. Francis and Ethan S. Lee, <a href="http://math.colgate.edu/~integers/w14/w14.pdf">Additive Representations of Natural Numbers</a>, #A14 INTEGERS 22 (2022). %H A098983 Shehzad Hathi and Daniel R. Johnston, <a href="https://arxiv.org/abs/2109.11883">On the sum of a prime and a square-free number with divisibility conditions</a>, Journal of Number Theory Volume 256, March 2024, pp. 354-372. arXiv:2109.11883 [math.NT] %H A098983 A. Page, <a href="https://doi.org/10.1112/plms/s2-39.1.116">On the Number of Primes in an Arithmetic Progression</a>, Proc London Math Soc (1935) s2-39 (1): 116-141. %H A098983 A. Walfisz, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002376350">Zur additiven Zahlentheorie II</a>, Math. Z. 40 (1936), 592-607. %F A098983 G.f.: (x^2+x^3+x^5+x^7+x^11+x^13+x^17+x^19+...)(x+x^2+x^3+x^5+x^6+x^7+x^10+x^11+x^13+x^14+x^15+x^17+x^19+...). %F A098983 a(n+1) = Sum_{k=1..n} A008966(k)*A010051(n-k+1) for n>0. [_Reinhard Zumkeller_, Nov 04 2009] %F A098983 Dudek shows that a(n) > 0 for n > 2. - _Charles R Greathouse IV_, Dec 23 2020 %e A098983 a(8) = 4: 8=2+6=3+5=5+3=7+1. %t A098983 m = 90; sf = Total[ x^Select[Range[m], SquareFreeQ] ]; pp = Sum[x^Prime[n], {n, 1, PrimePi @ Exponent[sf[[-1]], x]}]; CoefficientList[Series[pp * sf, {x, 0, m-1}], x] (* _Jean-François Alcover_, Jul 20 2011 *) %o A098983 (Haskell) %o A098983 a098983 n = sum $ map (a008966 . (n -)) $ takeWhile (< n) a000040_list %o A098983 -- _Reinhard Zumkeller_, Sep 14 2011 %o A098983 (PARI) a(n)=my(s);forprime(p=2,n,s+=issquarefree(n-p));s \\ _Charles R Greathouse IV_, Jun 20 2013 %o A098983 (PARI) a(n)=my(s);forsquarefree(k=1,n-2,if(isprime(n-k[1]),s++));s \\ _Charles R Greathouse IV_, Dec 23 2020 %K A098983 nonn,nice %O A098983 0,5 %A A098983 _N. J. A. Sloane_, Oct 24 2004