cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098987 Numerators in series expansion of log(Product_{m>=0} (1+q^m)).

This page as a plain text file.
%I A098987 #22 Oct 23 2022 23:59:27
%S A098987 0,1,1,4,1,6,2,8,1,13,3,12,1,14,4,8,1,18,13,20,3,32,6,24,1,31,7,40,2,
%T A098987 30,4,32,1,16,9,48,13,38,10,56,3,42,16,44,3,26,12,48,1,57,31,24,7,54,
%U A098987 20,72,1,80,15,60,2,62,16,104,1,84,8,68,9,32,24,72,13,74,19,124,5,96,28,80,3,121,21,84,8,108
%N A098987 Numerators in series expansion of log(Product_{m>=0} (1+q^m)).
%H A098987 Antti Karttunen, <a href="/A098987/b098987.txt">Table of n, a(n) for n = 0..16384</a>
%F A098987 Numerators of a(n) = Sum_{d|n} ((-1)^(d+1))/d. - _Ridouane Oudra_, Apr 28 2019
%F A098987 Numerators of coefficients in expansion of Sum_{k>=1} (-1)^(k+1) * x^k / (k * (1 - x^k)). - _Ilya Gutkovskiy_, Oct 03 2022
%e A098987 q + (1/2)*q^2 + (4/3)*q^3 + (1/4)*q^4 + (6/5)*q^5 + (2/3)*q^6 + (8/7)*q^7 + (1/8)*q^8 + (13/9)*q^9 + ...
%o A098987 (PARI) A098987(n) = if(0==n, 0, numerator(sumdiv(n,d, ((-1)^(d+1))/d))); \\ _Antti Karttunen_, May 06 2022
%Y A098987 Cf. A098988 (denominators).
%Y A098987 Cf. A069519 (apparently the positions of 1's), A353687.
%K A098987 nonn,frac
%O A098987 0,4
%A A098987 _N. J. A. Sloane_, Oct 24 2004
%E A098987 Data section extended up to term a(85) by _Antti Karttunen_, May 06 2022