This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098999 #19 Dec 23 2024 14:53:42 %S A098999 8,35,160,503,1834,4031,8944,15803,27970,52359,82150,132803,201724, %T A098999 281231,385054,533931,739310,966291,1267054,1624965,2013982,2507021, %U A098999 3078808,3783777,4696450,5726751,6819478,8044521,9339550,10782447 %N A098999 Sum of cubes of the first n primes. %H A098999 Robert Price, <a href="/A098999/b098999.txt">Table of n, a(n) for n = 1..1000</a> %H A098999 V. Shevelev, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2013-August/011512.html">Asymptotics of sum of the first n primes with a remainder term</a> %H A098999 OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a> %F A098999 a(n) = 0.25*n^4*log(n)^3 + O(n^4*log(n)^2*log(log(n))). The proof is similar to proof for A007504(n) (see link of Shevelev). - _Vladimir Shevelev_, Aug 02 2013 %t A098999 P3[n_]:=Sum[Prime[i]^3, {i, 1, n}];Table[P3[n], {n, 1, 60}] %o A098999 (PARI) a(n) = sum(i=1, n, prime(i)^3); \\ _Michel Marcus_, Jan 20 2014 %Y A098999 Partial sums of A030078. %K A098999 nonn %O A098999 1,1 %A A098999 Suzanne O' Regan (s.m.oregan(AT)student.ucc.ie), Nov 06 2004