This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099010 #9 Feb 16 2025 08:32:54 %S A099010 53955,59994,61974,62964,63954,71973,74943,75933,82962,83952,420876, %T A099010 642654,750843,840852,851742,860832,862632,7509843,7519743,7619733, %U A099010 8429652,8439552,8649432,8719722,9529641,43208766,64308654,64326654 %N A099010 Consider the Kaprekar map n->K(n) defined in A151949. Sequence gives numbers belonging to cycles of length greater than 1. %C A099010 86526432, 64308654, 83208762 form a cycle of length three and 86308632, 86326632, 64326654, 43208766, 85317642, 75308643, 84308652 form a cycle of length seven. %H A099010 Joseph Myers, <a href="/A099010/b099010.txt">Table of n, a(n) for n=1..28910</a> [From _Joseph Myers_, Aug 22 2009] %H A099010 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KaprekarRoutine.html">Kaprekar Routine</a> %H A099010 <a href="/index/K#Kaprekar_map">Index entries for the Kaprekar map</a> %e A099010 53955 and 59994 form a cycle of length 2 and hence are terms: 53955 -> 95553 - 35559 = 59994 -> 99954 - 45999 = 53955. %Y A099010 Cf. A151949, A090429, A069746, A099009. %Y A099010 Cf. A164715 (corresponding cycle lengths) [From _Joseph Myers_, Aug 24 2009] %Y A099010 In other bases: Empty (base 2), A165000 (base 3), A165019 (base 4), A165039 (base 5), A165058 (base 6), A165078 (base 7), A165097 (base 8), A165117 (base 9). [From _Joseph Myers_, Sep 05 2009] %K A099010 nonn,base %O A099010 1,1 %A A099010 _Klaus Brockhaus_, Sep 22 2004 %E A099010 Definition revised ny _N. J. A. Sloane_, Aug 18 2009 %E A099010 Extended by _Joseph Myers_, Aug 22 2009