This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099016 #36 Feb 06 2022 06:50:52 %S A099016 1,2,4,11,28,74,193,506,1324,3467,9076,23762,62209,162866,426388, %T A099016 1116299,2922508,7651226,20031169,52442282,137295676,359444747, %U A099016 941038564,2463670946,6449974273,16886251874,44208781348,115740092171 %N A099016 a(n) = 3*L(2*n)/5 - (-1)^n/5, where L = A000032. %C A099016 Let M = an infinite triangle with (1,2,2,3,3,4,4,...) as the left border and all other columns = (0,1,2,3,4,5,...). Then lim_{n->infinity} M^n = A099016, the left-shifted vector considered as a sequence. - _Gary W. Adamson_, Jul 26 2010 %H A099016 G. C. Greubel, <a href="/A099016/b099016.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..300 from Vincenzo Librandi) %H A099016 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-1). %F A099016 G.f.: (1 - 2*x^2)/((1 + x)*(1 - 3*x + x^2)). %F A099016 a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). %F A099016 a(n) = 2*F(n)^2 + F(n)*F(n-1) + F(n-1)^2, where F = A000045. %F A099016 a(n) = 3*((3/2 - sqrt(5)/2)^n + (3/2 + sqrt(5)/2)^n)/5 - (-1)^n/5. %F A099016 a(n) = A099015(n)/F(n+1). %F A099016 a(n) = 3*A005248(n)/5 - (-1)^n/5. %F A099016 a(n) = 3*A000032(2*n)/5 - (-1)^n/5. %F A099016 a(n) = A061646(n) + F(n)^2. %F A099016 a(n) = 3*F(n)^2 + (-1)^n. %F A099016 a(n) = F(n+1)^2 + F(n)*F(n-2). See also A192914, fourth formula. - _Bruno Berselli_, Feb 15 2017 %p A099016 with(combinat):seq(3*fibonacci(n)^2+(-1)^n, n= 0..27) %t A099016 CoefficientList[Series[(1 - 2*x^2)/((1 + x)*(1 - 3*x + x^2)), {x,0,50}], x] (* _G. C. Greubel_, Dec 31 2017 *) %o A099016 (Magma) [3*Lucas(2*n)/5-(-1)^n/5: n in [0..35]]; // _Vincenzo Librandi_, Jun 09 2011 %o A099016 (Magma) F:=Fibonacci; [F(n+1)^2+F(n)*F(n-2): n in [0..30]]; // _Bruno Berselli_, Feb 15 2017 %o A099016 (PARI) x='x+O('x^30); Vec((1 - 2*x^2)/((1 + x)*(1 - 3*x + x^2))) \\ _G. C. Greubel_, Dec 31 2017 %Y A099016 Cf. A000032. %K A099016 nonn,easy %O A099016 0,2 %A A099016 _Paul Barry_, Sep 22 2004