A099026 Array x AND NOT y, read by rising antidiagonals.
0, 1, 0, 2, 0, 0, 3, 2, 1, 0, 4, 2, 0, 0, 0, 5, 4, 1, 0, 1, 0, 6, 4, 4, 0, 2, 0, 0, 7, 6, 5, 4, 3, 2, 1, 0, 8, 6, 4, 4, 0, 2, 0, 0, 0, 9, 8, 5, 4, 1, 0, 1, 0, 1, 0, 10, 8, 8, 4, 2, 0, 0, 0, 2, 0, 0, 11, 10, 9, 8, 3, 2, 1, 0, 3, 2, 1, 0, 12, 10, 8, 8, 8, 2, 0, 0, 4, 2, 0, 0, 0, 13, 12, 9, 8, 9, 8, 1
Offset: 0
Examples
0,0,0,0,0,0, 1,0,1,0,1,0, 2,2,0,0,2,2, 3,2,1,0,3,2, 4,4,4,4,0,0, 5,4,5,4,1,0,
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Colored representation of the table for n, k < 2^10 (the color at (x, y) is function of T(x, y))
Crossrefs
Programs
-
Mathematica
Table[BitAnd[x - y, BitNot[y]], {x, 0, 15}, {y, 0, x}] (* Paolo Xausa, Sep 30 2024 *)
-
PARI
T(x,y)=bitnegimply(x,y)
Formula
T(x, y) = x AND NOT y. The AND NOT operation satisfies the bitwise truth table: (0, 0) = 0, (0, 1) = 0, (1, 0) = 1, (1, 1) = 0.
Comments