This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099048 #34 Jul 04 2025 19:21:50 %S A099048 32,50,68,86,104,122,140,158,176,194,212,230,248,266,284,302,320,338, %T A099048 356,374,392,410,428,446,464,482,500,518,536,554,572,590,608,626,644, %U A099048 662,680,698,716,734,752,770,788,806,824,842,860,878,896,914,932,950,968,986 %N A099048 Number of 5 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0) and (11;0). %C A099048 An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by (n+1)*2^(m-1)+2*(n-1). %C A099048 Also, temperatures in Fahrenheit that convert to Celsius as nonnegative multiples of 10. - _J. Lowell_, Jul 28 2007 %H A099048 Vincenzo Librandi, <a href="/A099048/b099048.txt">Table of n, a(n) for n = 1..5000</a> %H A099048 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>. %H A099048 S. Kitaev, <a href="http://www.emis.de/journals/INTEGERS/papers/e21/e21.Abstract.html">On multi-avoidance of right angled numbered polyomino patterns</a>, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp. %H A099048 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A099048 a(n) = 18*n + 14. %F A099048 a(n) = 2*A017245(n). %F A099048 From _Elmo R. Oliveira_, Jul 01 2025: (Start) %F A099048 G.f.: 2*x*(16-7*x)/(1-x)^2. %F A099048 E.g.f.: 2*(exp(x)*(9*x + 7) - 7). %F A099048 a(n) = 2*a(n-1) - a(n-2) for n > 2. (End) %t A099048 Table[18n + 14, {n, 52}] (* _Robert G. Wilson v_, Nov 16 2004 *) %o A099048 (Magma) [18*n+14: n in [1..60]]; // _Vincenzo Librandi_, Jul 25 2011 %Y A099048 Cf. A017245. %K A099048 nonn,easy %O A099048 1,1 %A A099048 _Sergey Kitaev_, Nov 13 2004 %E A099048 More terms from _Robert G. Wilson v_, Nov 16 2004