A099089 Riordan array (1, 2+x).
1, 0, 2, 0, 1, 4, 0, 0, 4, 8, 0, 0, 1, 12, 16, 0, 0, 0, 6, 32, 32, 0, 0, 0, 1, 24, 80, 64, 0, 0, 0, 0, 8, 80, 192, 128, 0, 0, 0, 0, 1, 40, 240, 448, 256, 0, 0, 0, 0, 0, 10, 160, 672, 1024, 512, 0, 0, 0, 0, 0, 1, 60, 560, 1792, 2304, 1024, 0, 0, 0, 0, 0, 0, 12, 280, 1792, 4608, 5120, 2048
Offset: 0
Examples
Triangle begins: 1; 0, 2; 0, 1, 4; 0, 0, 4, 8; 0, 0, 1, 12, 16; 0, 0, 0, 6, 32, 32; 0, 0, 0, 1, 24, 80, 64; The entries can also be interpreted as the antidiagonal reading of the following array: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,... A000079 0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120,... A001787 0, 0, 1, 6, 24, 80, 240, 672, 1792, 4608,11520,... A001788 0, 0, 0, 1, 8, 40, 160, 560, 1792, 5376,15360,... A001789 0, 0, 0, 0, 1, 10, 60, 280, 1120, 4032,13440,... 0, 0, 0, 0, 0, 1, 12, 84, 448, 2016, 8064,... 0, 0, 0, 0, 0, 0, 1, 14, 112, 672, 3360,... 0, 0, 0, 0, 0, 0, 0, 1, 16, 144, 960,... 0, 0, 0, 0, 0, 0, 0, 0, 1, 18, 180,... 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 20,... 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,...
References
- H. S. M. Coxeter, Regular Polytopes, Dover Publications, New York (1973), p. 122.
Links
- Eric W. Weisstein's Mathworld, Hypercube.
Formula
Number triangle T(n,k) = binomial(k, n-k)*2^k*(1/2)^(n-k); columns have g.f. (2*x+x^2)^k.
G.f.: 1/(1-2y*x-y*x^2). - Philippe Deléham, Nov 20 2011
Sum_ {k=0..n} T(n,k)*x^k = A000007(n), A000129(n+1), A090017(n+1), A090018(n), A190510(n+1), A190955(n+1) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Nov 20 2011
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 2, T(2,1) = 1, T(2,2) = 4, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 30 2013
Comments