This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099093 #21 Jan 15 2025 01:45:45 %S A099093 1,0,3,0,3,9,0,0,18,27,0,0,9,81,81,0,0,0,81,324,243,0,0,0,27,486,1215, %T A099093 729,0,0,0,0,324,2430,4374,2187,0,0,0,0,81,2430,10935,15309,6561,0,0, %U A099093 0,0,0,1215,14580,45927,52488,19683,0,0,0,0,0,243,10935,76545,183708,177147,59049 %N A099093 Riordan array (1, 3+3x). %C A099093 Row sums are A030195. Diagonal sums are A099094. %C A099093 The Riordan array (1,s+tx) defines T(n,k) = binomial(k,n-k)s^k(t/s)^(n-k). The row sums satisfy a(n)=s*a(n-1)+t*a(n-2) and the diagonal sums satisfy a(n)=s*a(n-2)+t*a(n-3). %C A099093 Modulo 2, this sequence gives A106344. - _Philippe Deléham_, Dec 18 2008 %F A099093 T(n,k) = binomial(k, n-k)*3^k. - corrected by _Michel Marcus_, Feb 21 2015 %F A099093 Columns have g.f. (3x+3x^3)^k. %F A099093 T(n,k) = A026729(n,k)*3^k. - _Philippe Deléham_, Jul 29 2006 %e A099093 Rows begin: %e A099093 1; %e A099093 0, 3; %e A099093 0, 3, 9; %e A099093 0, 0, 18, 27; %e A099093 0, 0, 9, 81, 81; %e A099093 0, 0, 0, 81, 324, 243; %e A099093 0, 0, 0, 27, 486, 1215, 729; %e A099093 ... %o A099093 (PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(k, n-k)*3^k, ", ");); print(););} \\ _Michel Marcus_, Feb 21 2015 %o A099093 (Magma) [[Binomial(k,n-k)*3^k: k in [0..n]]: n in [0.. 10]]; // _Vincenzo Librandi_, Feb 21 2015 /* as the triangle */ %Y A099093 Cf. A038221. %K A099093 easy,nonn,tabl %O A099093 0,3 %A A099093 _Paul Barry_, Sep 25 2004