cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A099112 Number of rhombus tilings of a hexagon with all sides of length 2n which contain the rhombus above and next to the center of the hexagon.

Original entry on oeis.org

6, 73080, 472598638512, 1631619756904447290240, 3008692066440440678503082183460000, 2962701176869736970134706082584757742017500000000, 1557551298812773746701490125169378658941648550102913633903040000000
Offset: 1

Views

Author

Ralf Stephan, Oct 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/3 - 1/12 Binomial[2n, n]^3/Binomial[6n, 3n]) Product[(i + j + k - 1)/(i + j + k - 2), {i, 1, 2n}, {j, 1, 2n}, {k, 1, 2n}];
    Array[a, 6] (* Jean-François Alcover, Nov 18 2018 *)
  • PARI
    a(n)=(1/3-1/12*binomial(2*n,n)^3/binomial(6*n,3*n))*prod(i=1,2*n,prod(j=1,2*n,prod(k=1,2*n,(i+j+k-1)/(i+j+k-2))))

Formula

a(n) ~ exp(1/12) * 3^(18*n^2 - 13/12) / (A * n^(1/12) * 2^(24*n^2 - 1/6)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 29 2023

A099113 Number of rhombus tilings of a hexagon with all sides of length 2n+1 which contain the rhombus above and next to the center of the hexagon.

Original entry on oeis.org

364, 94682016, 13704096621766720, 1074416738842280125146121600, 45276656003305722314718295417920118125000, 1022271041965503132822786100650613600920143229195000000000
Offset: 1

Views

Author

Ralf Stephan, Oct 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    G = BarnesG; a[n_] := (G[2n+2]^(1-4n) G[2n+3]^(4n+2) G[6n+4] (Binomial[2n, n]^3/Binomial[6n+2, 3n+1]+1) Gamma[2n+2]^(-4n-2))/(3G[4n+3]^3); Array[a, 6] (* Jean-François Alcover, Feb 20 2019 *)
  • PARI
    a(n)=(1/3+1/3*binomial(2*n,n)^3/binomial(6*n+2,3*n+1))*prod(i=1,2*n+1,prod(j=1,2*n+1,prod(k=1,2*n+1,(i+j+k-1)/(i+j+k-2))))

Formula

a(n) ~ 3^(41/12 + 18*n + 18*n^2) * exp(1/12) / (A * n^(1/12) * 2^(35/6 + 24*n + 24*n^2)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 29 2023

A099114 Number of rhombus tilings of a hexagon with side lengths 2n,2n+2,2n,2n,2n+2,2n which contain the rhombus above and next to the center of the hexagon.

Original entry on oeis.org

19, 2252052, 125575149020464, 3624877924928635307525440, 55204136490632334691332479792745796875, 446207680704793917097310140821019734826847707500000000
Offset: 1

Views

Author

Ralf Stephan, Oct 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    G = BarnesG; a[n_] := (G[2n+1]^(2-2n) G[2n+3]^(1-2n)(G[2n+2] G[2n+4])^(2n) G[6n+3](1/3 - ((10n+2) Binomial[2n, n]^3)/((6n+3) Binomial[6n+2, 3n+1]))) /((G[4n+1] G[4n+3]^2) (Gamma[2n+1] Gamma[2n+3])^(2n)); Array[a, 6] (* Jean-François Alcover, Feb 20 2019 *)
  • PARI
    a(n)=(1/3-(10*n+2)/(6*n+3)*binomial(2*n,n)^3/binomial(6*n+2,3*n+1))*prod(i=1,2*n,prod(j=1,2*n+2,prod(k=1,2*n,(i+j+k-1)/(i+j+k-2))))

Formula

a(n) ~ exp(1/12) * 3^(11/12 + 12*n + 18*n^2) / (A * n^(1/12) * 2^(23/6 + 16*n + 24*n^2)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 29 2023

A099115 Number of rhombus tilings of a hexagon with side lengths 2n+1,2n-1,2n+1,2n+1,2n-1,2n+1 which contain the rhombus above and next to the center of the hexagon.

Original entry on oeis.org

11, 325908, 5604277805984, 53038629767258343852608, 271847253225677708645983929633862500, 749641889501430920151272774045675453348280000000000
Offset: 1

Views

Author

Ralf Stephan, Oct 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    G = BarnesG; a[n_] := (G[2n+2]^(1-2n) (G[2n+1] G[2n+3])^(2n+1) G[6n+2] ((( 10n+3) Binomial[2n, n]^3)/(n Binomial[6n, 3n]) + 8) Gamma[2n+2]^(-2n-1))/((G[2n] Gamma[2n])^(2n) (24 G[4n+1]^2 G[4n+3] Gamma[2n]));
    Array[a, 6] (* Jean-François Alcover, Feb 20 2019 *)
  • PARI
    a(n)=(1/3+(10*n+3)/(24*n)*binomial(2*n,n)^3/binomial(6*n,3*n))*prod(i=1,2*n+1,prod(j=1,2*n-1,prod(k=1,2*n+1,(i+j+k-1)/(i+j+k-2))))

Formula

a(n) ~ exp(1/12) * 3^(-7/12 + 6*n + 18*n^2) / (A * n^(1/12) * 2^(11/6 + 8*n + 24*n^2)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 29 2023

A099117 Number of rhombus tilings of a hexagon with side lengths 2n+3,2n-1,2n+3,2n+3,2n-1,2n+3 which contain the rhombus above and next to the center of the hexagon.

Original entry on oeis.org

152, 436381660, 574954797841668608, 388062759166540341977143692000, 137515819873369461005150742745259538637500000, 25797761881848486655895899589856317740988916476499759600000000
Offset: 1

Views

Author

Ralf Stephan, Oct 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/3+2(6n^2+9n+2)/(n+1)^2 Binomial[2n, n]^3/Binomial[6n+4, 3n+2]) Product[(i+j+k-1)/(i+j+k-2), {i, 1, 2n+3}, {j, 1, 2n-1}, {k, 1, 2n+3}];
    Array[a, 6] (* Jean-François Alcover, Nov 18 2018, from PARI *)
  • PARI
    a(n)=(1/3+2*(6*n*n+9*n+2)/(n+1)^2*binomial(2*n,n)^3/binomial(6*n+4,3*n+2))*prod(i=1,2*n+3,prod(j=1,2*n-1,prod(k=1,2*n+3,(i+j+k-1)/(i+j+k-2))))

Formula

a(n) ~ exp(1/12) * 3^(137/12 + 30*n + 18*n^2) / (A * n^(1/12) * 2^(131/6 + 40*n + 24*n^2)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 29 2023
Showing 1-5 of 5 results.