cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099122 Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2,3}.

This page as a plain text file.
%I A099122 #10 Jan 17 2020 20:23:11
%S A099122 1,4,55,1540,73815,5461512,581106988,84431259000,16104878212995,
%T A099122 3910294246315600,1178924607035010836,432472873725488656424,
%U A099122 189789513537655207705620,98222259182333060014344720
%N A099122 Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2,3}.
%C A099122 This is the number of possible votes of n referees judging n dancers by a mark between 0 and 3, where the referees cannot be distinguished.
%C A099122 a(n) is the number n element multisets of n element multisets of a 4-set. - _Andrew Howroyd_, Jan 17 2020
%H A099122 Andrew Howroyd, <a href="/A099122/b099122.txt">Table of n, a(n) for n = 0..100</a>
%F A099122 a(n) = binomial(binomial(n+3, n) + n - 1, n). - _Andrew Howroyd_, Jan 17 2020
%o A099122 (PARI) a(n)={binomial(binomial(n+3, n) + n - 1, n)} \\ _Andrew Howroyd_, Jan 17 2020
%Y A099122 Column k=4 of A331436.
%Y A099122 Cf. A099121, A099123, A099124, A099125, A099126, A099127, A099128.
%K A099122 nonn
%O A099122 0,2
%A A099122 _Sascha Kurz_, Sep 28 2004
%E A099122 a(0)=1 prepended by _Andrew Howroyd_, Jan 17 2020