cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099123 Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2,3,4}.

This page as a plain text file.
%I A099123 #11 Jan 17 2020 21:35:02
%S A099123 1,5,120,7770,1088430,286243776,127860662755,90079147136880,
%T A099123 94572327271677750,141504997346476482290,291098519807782284023426,
%U A099123 799388312264077003441393875,2859142263297618955891805452700
%N A099123 Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2,3,4}.
%C A099123 This is the number of possible votes of n referees judging n dancers by a mark between 0 and 4, where the referees cannot be distinguished.
%C A099123 a(n) is the number of n element multisets of n element multisets of a 5-set. - _Andrew Howroyd_, Jan 17 2020
%H A099123 Andrew Howroyd, <a href="/A099123/b099123.txt">Table of n, a(n) for n = 0..100</a>
%F A099123 a(n) = binomial(binomial(n + 4, n) + n - 1, n). - _Andrew Howroyd_, Jan 17 2020
%o A099123 (PARI) a(n)={binomial(binomial(n + 4, n) + n - 1, n)} \\ _Andrew Howroyd_, Jan 17 2020
%Y A099123 Column k=5 of A331436.
%Y A099123 Cf. A099121, A099122, A099124, A099125, A099126, A099127, A099128.
%K A099123 nonn
%O A099123 0,2
%A A099123 _Sascha Kurz_, Sep 28 2004
%E A099123 a(0)=1 prepended by _Andrew Howroyd_, Jan 17 2020