cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099124 Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2,3,4,5}.

This page as a plain text file.
%I A099124 #13 Jul 26 2020 11:48:01
%S A099124 1,6,231,30856,11009376,8809549056,13949678575756,39822612151165272,
%T A099124 190782296093487153627,1449479533445348118223510,
%U A099124 16683660613067331275158983216,280167196060745030529247396914000,6651137552302201488023930244802896266
%N A099124 Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2,3,4,5}.
%C A099124 This is the number of possible votes of n referees judging n dancers by a mark between 0 and 5, where the referees cannot be distinguished.
%C A099124 a(n) is the number of n element multisets of n element multisets of a 6-set. - _Andrew Howroyd_, Jan 17 2020
%H A099124 Andrew Howroyd, <a href="/A099124/b099124.txt">Table of n, a(n) for n = 0..100</a>
%F A099124 a(n) = binomial(binomial(n + 5, n) + n - 1, n). - _Andrew Howroyd_, Jan 17 2020
%t A099124 Table[Binomial[Binomial[n+5,n]+n-1,n],{n,0,20}] (* _Harvey P. Dale_, Jul 26 2020 *)
%o A099124 (PARI) a(n)={binomial(binomial(n + 5, n) + n - 1, n)} \\ _Andrew Howroyd_, Jan 17 2020
%Y A099124 Column k=6 of A331436.
%Y A099124 Cf. A099121, A099122, A099123, A099125, A099126, A099127, A099128.
%K A099124 nonn
%O A099124 0,2
%A A099124 _Sascha Kurz_, Sep 28 2004
%E A099124 a(0)=1 prepended and a(12) and beyond from _Andrew Howroyd_, Jan 17 2020