A099131 Quintisection and binomial transform of 1/(1-x^4-x^5).
1, 1, 1, 1, 2, 7, 22, 57, 128, 264, 529, 1079, 2290, 5022, 11148, 24633, 53824, 116472, 250880, 540536, 1167937, 2531061, 5494247, 11928731, 25880583, 56101768, 121544393, 263289438, 570427339, 1236159756, 2679343966, 5807782301
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-4,1).
Programs
-
Mathematica
LinearRecurrence[{5, -10, 10, -4, 1}, {1, 1, 1, 1, 2}, 32] (* Jean-François Alcover, Sep 21 2017 *)
Formula
G.f.: (1-x)^4/((1-x)^5-x^4); a(n)=sum{k=0..floor(5n/4), binomial(k, 5n-4k)}; a(n)=A017827(5n).
a(n)=sum{k=0..floor((n+1)/2), binomial(n+k, 5k)}; - Paul Barry, May 09 2005