This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099155 #89 Aug 07 2025 10:25:37 %S A099155 0,1,2,4,7,13,26,50,98 %N A099155 Maximum length of a simple path with no chords in the n-dimensional hypercube, also known as snake-in-the-box problem. %C A099155 Some confusion seems to exist in the distinction between n-snakes and n-coils. Earlier papers and also A000937 used "snake" to mean a closed path, which is called n-coil in newer notation, see Harary et al. a(8) is conjectured to be 97 by Rajan and Shende. [The true value, however, is 98. See Ostergard and Ville, 2014. - _N. J. A. Sloane_, Apr 06 2014] %C A099155 Longest open achordal path in n-dimensional hypercube. %C A099155 After 50, lower bounds on the next terms are 97, 186, 358, 680, 1260. - Darren Casella (artdeco42(AT)yahoo.com), Mar 04 2005 %C A099155 The length of the longest known snake (open path) in dimension 8 (as of December, 2009) is 98. It was found by B. Carlson (confirmed by W. D. Potter) and soon to be reported in the literature. Numerous 97-length snakes are currently published. - W. D. Potter (potter(AT)uga.edu), Feb 24 2009 %D A099155 B. P. Carlson, D. F. Hougen: Phenotype feedback genetic algorithm operators for heuristic encoding of snakes within hypercubes. In: Proc. 12th Annu. Conf. Genetic and Evolutionary Computation, pp. 791-798 (2010). [Shows a(8) >= 98. - _N. J. A. Sloane_, Apr 06 2014] %D A099155 D. Casella and W. D. Potter, "New Lower Bounds for the Snake-in-the-box Problem: Using Evolutionary Techniques to Hunt for Coils". Submitted to IEEE Conference on Evolutionary Computing, 2005. %H A099155 David Allison, Daniel Paulusma, <a href="https://arxiv.org/abs/1603.05119">New Bounds for the Snake-in-the-Box Problem</a>, arXiv:1603.05119 [math.CO], 16 Jun 2016. %H A099155 D. A. Casella and W. D. Potter, <a href="https://www.researchgate.net/publication/221439264_New_Lower_Bounds_for_the_Snake-in-the-Box_Problem_Using_Evolutionary_Techniques_to_Hunt_for_Snakes">New Lower Bounds for the Snake-in-the-box Problem: Using Evolutionary Techniques to Hunt for Snakes</a>, 18th International FLAIRS Conference (2005). %H A099155 F. Harary, J. P. Hayes and H. J. Wu, <a href="https://doi.org/10.1016/0898-1221(88)90213-1">A survey of the theory of hypercube graphs</a>, Comput. Math. Applic., 15 (1988) 277-289. %H A099155 S. Hood, D. Recoskie, J. Sawada, D. Wong, <a href="https://doi.org/10.1007/s10878-013-9630-z">Snakes, coils, and single-track circuit codes with spread k</a>, J. Combin. Optim. 30 (1) (2015) 42-62, Table 2 (lower bounds for n<=17) %H A099155 K. J. Kochut, <a href="https://combinatorialpress.com/jcmcc-articles/volume-020/snake-in-the-box-codes-for-dimension-7/">Snake-In-The-Box Codes for Dimension 7</a>, Journal of Combinatorial Mathematics and Combinatorial Computing, Vol. 20, pp. 175-185, 1996. %H A099155 Randall Munroe, <a href="https://xkcd.com/3125/">Snake-in-the-Box Problem</a>, xkcd Web Comic #3125, Aug 06 2025. %H A099155 Patric R. J. Östergård, Ville H. Pettersson, <a href="https://doi.org/10.1007/s00373-014-1423-3">Exhaustive Search for Snake-in-the-Box Codes</a>, Graphs and Combinatorics 31, 1019-1028 (2015). [Shows a(8) = 98.] %H A099155 Ville Pettersson, <a href="https://aaltodoc.aalto.fi/handle/123456789/17688">Graph Algorithms for Constructing and Enumerating Cycles and Related Structures</a>, Doctoral Dissertation, 2015. %H A099155 Potter, W. D., <a href="https://web.archive.org/web/20200217135138/http://ai1.ai.uga.edu/sib/sibwiki/doku.php/records">A list of current records for the Snake-in-the-Box problem.</a> [Archived version.] %H A099155 Potter, W. D., R. W. Robinson, J. A. Miller, K. J. Kochut and D. Z. Redys, <a href="https://www.researchgate.net/publication/2577776_Using_The_Genetic_Algorithm_to_Find_Snake-In-The-Box_Codes">Using the Genetic Algorithm to Find Snake In The Box Codes</a>, Proceedings of the Seventh International Conference on Industrial & Engineering Applications of Artificial Intelligence and Expert Systems, pp. 421-426, Austin, Texas, 1994. %H A099155 Dayanand S. Rajan, Anil M. Shende, <a href="https://www.researchgate.net/publication/2525975_Maximal_and_Reversible_Snakes_in_Hypercubes">Maximal and Reversible Snakes in Hypercubes</a> (2002). %H A099155 Wikipedia, <a href="https://en.wikipedia.org/wiki/Snake-in-the-box">Snake-in-the-box</a>. %H A099155 Gilles Zémor, <a href="https://doi.org/10.1007/BF01200911">An upper bound on the size of the snake-in-the-box</a>, Combinatorica 17.2 (1997): 287-298. %e A099155 a(3)=4: Path of a longest 3-snake starts at 000 and then visits 100 101 111 011. %e A099155 a(4)=7: Path of a longest 4-snake: 0000 1000 1010 1110 0110 0111 0101 1101. %e A099155 See figures 1 and 2 in Rajan-Shende. %Y A099155 Cf. A000937 = length of maximum n-coil. %Y A099155 Row maxima of A357499. %K A099155 hard,more,nonn %O A099155 0,3 %A A099155 _Hugo Pfoertner_, Oct 11 2004 %E A099155 a(8) from Patric R. J. Östergård and V. H. Pettersson (2014). - _N. J. A. Sloane_, Apr 06 2014 %E A099155 a(0) prepended by _Pontus von Brömssen_, Oct 02 2022