This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099163 #32 Mar 12 2024 12:47:18 %S A099163 1,1,2,3,7,12,27,49,106,199,419,804,1663,3237,6618,13003,26383,52156, %T A099163 105299,209001,420586,836991,1680747,3350548,6718807,13408957, %U A099163 26864282,53653539,107428471,214660524,429638859,858763489,1718359018,3435371767 %N A099163 Expansion of (1-2*x^2)/((1-2*x)*(1+x-x^2)). %C A099163 Counts closed walks of length n at the vertex with loop of the graph with adjacency matrix A=[0,1,1,1;1,0,0,0;1,0,0,0;1,0,0,1]. Binomial transform is A099164. %C A099163 Floretion Algebra Multiplication Program, FAMP Code: 1jesforseq[ (.5'i + .5i' + .5'ii' + .5e)*(.5j' + .5'kk' + .5'ki' + .5e) ], 1vesforseq = A000079(n+2) (Dement) %H A099163 Michael De Vlieger, <a href="/A099163/b099163.txt">Table of n, a(n) for n = 0..3323</a> %H A099163 Michael A. Allen, <a href="https://arxiv.org/abs/2209.01377">On a Two-Parameter Family of Generalizations of Pascal's Triangle</a>, arXiv:2209.01377 [math.CO], 2022. %H A099163 Johann Cigler, <a href="http://arxiv.org/abs/1501.04750">Some remarks and conjectures related to lattice paths in strips along the x-axis</a>, arXiv:1501.04750 [math.CO], 2015-2016. %H A099163 Johann Cigler, <a href="https://arxiv.org/abs/2212.02118">Recurrences for certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials</a>, arXiv:2212.02118 [math.NT], 2022. %H A099163 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-2). %F A099163 a(n)=a(n-1)+3a(n-2)-2a(n-3); a(n)=((sqrt(5)-1)/2)^n(3/10+sqrt(5)/10)+((-sqrt(5)-1)/2)^n(3/10-sqrt(5)/10)+2^(n+1)/5; a(n)=sum{k=0..n, (-1)^(n-k)Fib(n-k+1)(2^(k-1)+0^k/2-sum{j=0..k, C(k, j)j(-1)^j})}. %F A099163 4*a(n+1) - a(n+3) = A039834(n) - _Creighton Dement_, Feb 25 2005 %F A099163 Contribution from _Paul D. Hanna_, Jan 02 2009: (Start) %F A099163 a(n) = Sum_{k=-[n/5]..[n/5]} C(n, [(n-5*k)/2]). %F A099163 a(n) = 2*Sum_{k=-[n/10]..[n/10]} C(n, [n/2]-5*k) - fibonacci(n+1). (End) %F A099163 5*a(n) = 2^(n+1) + A061084(n+1), n>0. - _R. J. Mathar_, Sep 11 2019 %t A099163 CoefficientList[Series[(1 - 2 x^2)/((1 - 2 x) (1 + x - x^2)), {x, 0, 33}], x] (* _Michael De Vlieger_, Sep 14 2022 *) %o A099163 (PARI) a(n)=sum(k=-n\5,n\5,binomial(n,(n-5*k)\2)) \\ _Paul D. Hanna_, Jan 02 2009 %o A099163 (PARI) a(n)=-fibonacci(n+1)+2*sum(k=-n\10,n\10,binomial(n,n\2-5*k)) \\ _Paul D. Hanna_, Jan 02 2009 %Y A099163 Cf. A039834. %K A099163 nonn,easy %O A099163 0,3 %A A099163 _Paul Barry_, Oct 01 2004