This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099237 #18 Jan 19 2023 09:33:53 %S A099237 1,1,3,10,45,251,1624,11908,97545,880660,8664546,92096731,1050304775, %T A099237 12778138842,165033693175,2253204163256,32401745953105, %U A099237 489207829112931,7733130368443057,127664099576228184,2196149923000824756 %N A099237 a(n) = Sum_{k=0..n} binomial(n*(n-k), k). %C A099237 Main diagonal of A099233. %H A099237 Vaclav Kotesovec, <a href="/A099237/b099237.txt">Table of n, a(n) for n = 0..490</a> %F A099237 From _Vaclav Kotesovec_, Feb 19 2018: (Start) %F A099237 a(n)^(1/n) ~ n^(n/w) * (n+1-w)^(1 - (n+1)/w) * (w-1)^(1/w - 1), where w = LambertW(exp(1)*n), %F A099237 a(n)^(1/n) ~ n/log(n), but the convergence is too slow. (End) %F A099237 From _Peter Bala_, Jan 19 2023: (Start) %F A099237 Conjectures: a(2^k) == 1 (mod 2^k) and a(3^k) == 1 (mod 3^(k+1)); a(p^k) == 1 (mod p^(k+1)) for all primes p >= 5. %F A099237 Let m be a positive integer. Similar recurrences may hold for the sequence whose n-th term is given by Sum_{k = 0..n} binomial(m*n*k, n-k). Cf. A359842. (End) %p A099237 A099237:= n-> add( binomial(n*j, n-j), j=0..n ); %p A099237 seq(A099237(n), n=0..30); # _G. C. Greubel_, Mar 09 2021 %t A099237 Table[Sum[Binomial[n*(n - k), k], {k, 0, n}], {n, 0, 30}] (* _Vaclav Kotesovec_, Feb 19 2018 *) %o A099237 (Sage) %o A099237 def A099237(n): return sum( binomial(n*j, n-j) for j in (0..n)) %o A099237 [A099237(n) for n in (0..30)] # _G. C. Greubel_, Mar 09 2021 %o A099237 (Magma) %o A099237 A099237:= func< n | (&+[Binomial(n*j, n-j): j in [0..n]]) >; %o A099237 [A099237(n): n in [0..30]]; // _G. C. Greubel_, Mar 09 2021 %Y A099237 Cf. A099233, A157114, A359842. %K A099237 easy,nonn %O A099237 0,3 %A A099237 _Paul Barry_, Oct 08 2004