cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099247 Numbers such that, in binary representation, the length and the number of ones are coprime.

This page as a plain text file.
%I A099247 #20 Jul 27 2025 10:33:51
%S A099247 1,2,4,5,6,8,11,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,32,
%T A099247 47,55,59,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,
%U A099247 82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103
%N A099247 Numbers such that, in binary representation, the length and the number of ones are coprime.
%H A099247 Reinhard Zumkeller, <a href="/A099247/b099247.txt">Table of n, a(n) for n = 1..10000</a>
%H A099247 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>.
%F A099247 A099244(a(n)) = 1.
%t A099247 Select[Range[150],CoprimeQ[IntegerLength[#,2],DigitCount[#,2,1]]&] (* _Harvey P. Dale_, Sep 22 2012 *)
%o A099247 (Haskell)
%o A099247 a099247 n = a099247_list !! (n-1)
%o A099247 a099247_list = filter ((== 1) . a099244) [1..]
%o A099247 -- _Reinhard Zumkeller_, Oct 10 2013
%o A099247 (PARI) isok(k) = {my(b = binary(k)); gcd(#b, vecsum(b)) == 1;} \\ _Amiram Eldar_, Jul 26 2025
%Y A099247 Complement of A099248.
%Y A099247 Cf. A070939, A000120, A007088, A099244, A099249.
%K A099247 nonn,base
%O A099247 1,2
%A A099247 _Reinhard Zumkeller_, Oct 08 2004
%E A099247 Definition clarified by _Harvey P. Dale_, Sep 22 2012