cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099252 Bisection of A005043.

Original entry on oeis.org

0, 1, 6, 36, 232, 1585, 11298, 83097, 625992, 4805595, 37458330, 295673994, 2358641376, 18985057351, 154000562758, 1257643249140, 10331450919456, 85317692667643, 707854577312178, 5897493615536452, 49320944483427000, 413887836110423787, 3484084625456932134, 29412628894558563849
Offset: 0

Views

Author

N. J. A. Sloane, Nov 16 2004

Keywords

References

  • G. F. Smith, On isotropic tensors and rotation tensors of dimension m and order n, Tensor (N.S.), Vol. 19 (1968), 79-88 (MR0224008).

Crossrefs

Programs

  • Maple
    G := (1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)): Gser := series(G,x=0,60):
    seq(coeff(Gser, x^(2*n-1)), n=1..25); # Emeric Deutsch
    a := n -> -hypergeom([-2*n-1, 1/2], [2], 4):
    seq(simplify(a(n)), n=0..23); # Peter Luschny, Jul 26 2020
  • Mathematica
    Take[CoefficientList[Series[(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x)), {x, 0, 60}], x], {2, -1, 2}] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    x='x+O('x^66); v=Vec((1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x))); vector(#v\2,n,v[2*n]) \\ Joerg Arndt, May 12 2013
    
  • Sage
    def A():
        a, b, c, d, n = 0, 1, 1, -1, 1
        yield 0
        while True:
            n += 1
            a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))
            c, d = d, (3*(n-1)*c-(2*n-1)*d)//n
            if n%2: yield -(d + b)*(1-(-1)^n)//2
    A099252  = A()
    print([next(A099252) for  in range(24)]) # _Peter Luschny, May 16 2016

Formula

Recurrence: (n+1)*(2*n+1)*a(n) = n*(26*n-7)*a(n-1) - 3*(26*n^2 - 61*n + 39)*a(n-2) + 27*(n-2)*(2*n-3)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 3^(2*n+5/2)/(16*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
a(n) = -hypergeom([-2*n - 1, 1/2], [2], 4). - Peter Luschny, Jul 26 2020

Extensions

More terms from Emeric Deutsch, Nov 18 2004