A099286 Decimal expansion of the error function at 1.
8, 4, 2, 7, 0, 0, 7, 9, 2, 9, 4, 9, 7, 1, 4, 8, 6, 9, 3, 4, 1, 2, 2, 0, 6, 3, 5, 0, 8, 2, 6, 0, 9, 2, 5, 9, 2, 9, 6, 0, 6, 6, 9, 9, 7, 9, 6, 6, 3, 0, 2, 9, 0, 8, 4, 5, 9, 9, 3, 7, 8, 9, 7, 8, 3, 4, 7, 1, 7, 2, 5, 4, 0, 9, 6, 0, 1, 0, 8, 4, 1, 2, 6, 1, 9, 8, 3, 3, 2, 5, 3, 4, 8, 1, 4, 4, 8, 8, 8, 4, 5, 4, 1, 5, 8
Offset: 0
Examples
0.84270079294971486934122063508260925929606699796630290845993789783...
Links
- Eric Weisstein's World of Mathematics, Erf
Programs
-
Mathematica
RealDigits[ Erf[1], 10, 105][[1]]
-
PARI
1 - erfc(1)
Formula
Equals 1-A099287.
Equals (1/e) Sum_{n >= 0} (1/(n/2)!) - 1. - Jean-François Alcover, Jun 14 2020
From Amiram Eldar, Jul 22 2020: (Start)
Equals (2/sqrt(Pi)) * Integral_{x=0..1} exp(-x^2) dx.
Equals (2/sqrt(Pi)) * Sum_{k>=0} (-1)^k/(k! * (2*k + 1)) = (2/sqrt(Pi)) * Sum_{k>=0} (-1)^k/A007680(k).
Equals (1/e) * Sum_{k>=1} 1/Gamma(k + 1/2). (End)