cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099324 Expansion of (1 + sqrt(1 + 4x))/(2(1 + x)).

This page as a plain text file.
%I A099324 #26 Jan 15 2025 01:45:41
%S A099324 1,0,-1,3,-8,22,-64,196,-625,2055,-6917,23713,-82499,290511,-1033411,
%T A099324 3707851,-13402696,48760366,-178405156,656043856,-2423307046,
%U A099324 8987427466,-33453694486,124936258126,-467995871776,1757900019100,-6619846420552,24987199492704,-94520750408708
%N A099324 Expansion of (1 + sqrt(1 + 4x))/(2(1 + x)).
%C A099324 Binomial transform is A099323. Second binomial transform is A072100.
%C A099324 Hankel transform is A049347. - _Paul Barry_, Aug 10 2009
%H A099324 Robert Israel, <a href="/A099324/b099324.txt">Table of n, a(n) for n = 0..1668</a>
%H A099324 Paul Barry, <a href="https://arxiv.org/abs/2004.04577">On a Central Transform of Integer Sequences</a>, arXiv:2004.04577 [math.CO], 2020.
%F A099324 a(n) = Sum_{k=0..2n} (2*0^(2n-k)-1)*C(k,floor(k/2)). - _Paul Barry_, Aug 10 2009
%F A099324 |a(n+2)| = A091491(n+2,2). - _Philippe Deléham_, Nov 25 2009
%F A099324 G.f.: T(0)/(2+2*x), where T(k) = k+2 - 2*x*(2*k+1) + 2*x*(k+2)*(2*k+3)/T(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Nov 27 2013
%F A099324 D-finite with recurrence: (2+4*n)*a(n) + (4+5*n)*a(n+1) + (n+2)*a(n+2) = 0. - _Robert Israel_, Mar 27 2018
%p A099324 f:= gfun:-rectoproc({(2+4*n)*a(n)+(4+5*n)*a(n+1)+(n+2)*a(n+2), a(0) = 1, a(1) = 0}, a(n), remember):
%p A099324 map(f, [$0..50]); # _Robert Israel_, Mar 27 2018
%t A099324 CoefficientList[Series[(1+Sqrt[1+4x])/(2(1+x)),{x,0,40}],x] (* _Harvey P. Dale_, Jan 30 2014 *)
%Y A099324 Cf. A014138.
%K A099324 easy,sign
%O A099324 0,4
%A A099324 _Paul Barry_, Oct 12 2004