cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099326 Expansion of ((1-2x)*sqrt(1+2x) + sqrt(1-2x))/(2*(1-2x)^(5/2)).

Original entry on oeis.org

1, 4, 11, 28, 67, 156, 354, 792, 1747, 3820, 8278, 17832, 38174, 81368, 172644, 365104, 769411, 1617228, 3389838, 7090440, 14797546, 30828424, 64106716, 133113168, 275967022, 571415416, 1181585564, 2440680592, 5035637212
Offset: 0

Views

Author

Paul Barry, Oct 12 2004

Keywords

Comments

a(n) = Sum_{k=0..n} (k+1)*binomial(n,(n-k)/2)*binomial(k+3,3)*(1+(-1)^(n-k))/(n+k+2). The g.f. is transformed to 1/(1-x)^4 under the Chebyshev transformation A(x) -> (1/(1+x^2))*A(x/(1+x^2)). Second binomial transform of the sequence with g.f. 1/c(-x)^2, where c(x) is the g.f. of the Catalan numbers A000108.
0, 1, 4, 11, 28, ... is the image of the quarter-squares floor((n+1)^2/4) (A002620(n+1)) under the Riordan array ((1+2x)/sqrt(1-4x^2), x*c(x^2)). Hankel transform of A099326 has g.f. (1-x)/(1+x)^4. - Paul Barry, Oct 25 2007

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1-2*x)*Sqrt[1+2*x]+Sqrt[1-2*x])/(2*(1-2*x)^(5/2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)

Formula

a(n) = Sum_{k=0..n} (k+1)*binomial(n, (n-k)/2)*binomial(k+3, 3)*(1 + (-1)^(n-k))/(n+k+2).
a(n) = Sum_{k=0..n} C(n,k)*(floor((abs(n-2k) + 1)^2/4) + floor((abs(n-2k+1) + 1)^2/4)). - Paul Barry, Oct 25 2007
D-finite with recurrence: n*(n-2)*a(n) +2*(-n^2+3)*a(n-1) -4*(n-1)*(n-4)*a(n-2) +8*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ n * 2^(n-1) * (1 + 2*sqrt(2/(Pi*n))). - Vaclav Kotesovec, Feb 12 2014