cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099327 Expansion of ((1-x)*sqrt(1+2x) + (1+x)*sqrt(1-2x))/(2*(1-2x)^(5/2)).

Original entry on oeis.org

1, 5, 16, 45, 117, 291, 700, 1646, 3799, 8647, 19448, 43330, 95738, 210094, 458216, 994204, 2146955, 4617439, 9893376, 21128058, 44982486, 95510090, 202278376, 427425860, 901236582, 1896594966, 3983929680, 8354539156, 17492095604
Offset: 0

Views

Author

Paul Barry, Oct 12 2004

Keywords

Comments

The g.f. is transformed to 1/(1-x)^5 under the Chebyshev transformation A(x)->1/(1+x^2)A(x/(1+x^2)). Second binomial transform of the sequence with g.f. 1/c(-x)^3, where c(x) is the g.f. of the Catalan numbers A000108.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1-x)*Sqrt[1+2*x]+(1+x)*Sqrt[1-2*x])/(2*(1-2*x)^(5/2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)

Formula

a(n) = Sum_{k=0..n} (k+1)*binomial(n, (n-k)/2)*binomial(k+4, 4)*(1+(-1)^(n-k))/(n+k+2).
D-finite with recurrence: n*(n-3)*a(n) + 2*(-n^2+6)*a(n-1) + 4*(n-1)*(n-5)*a(n-2) + 8*(n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ 2^(n+1/2) *n^(3/2) / (3*sqrt(Pi)) * (1 + 9/8*sqrt(2*Pi/n)). - Vaclav Kotesovec, Feb 08 2014