A099353 From P-positions in a certain game.
0, 2, 7, 12, 18, 25, 35, 45, 56, 68, 83, 98, 114, 131, 149, 170, 191, 213, 236, 260, 285, 313, 341, 370, 400, 431, 463, 496, 530, 565, 603, 641, 680, 720, 761, 803, 846, 890, 935, 983, 1031, 1080, 1130, 1181, 1233, 1286, 1340, 1395, 1451, 1510, 1569
Offset: 0
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
- A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
Programs
-
Maple
a:=proc(n) option remember: local j,t: if(n=0)then return 0: else t:=a(n-1)+1: for j from 0 to n-1 do if(t=b(j))then return t+1: elif(tNathaniel Johnston, Apr 28 2011
-
Mathematica
a[n_] := a[n] = Module[{j, t}, If[n == 0, 0, t = a[n - 1] + 1; For[j = 0, j <= n - 1, j++, Which[t == b[j], Return[t + 1], t < b[j], Break[]]]; t]]; b[n_] := b[n] = If[n == 0, 0, b[n - 1] + a[n] - Floor[(a[n - 1] + 1)/a[n]] + 2]; Table[b[n], {n, 0, 50}] (* Jean-François Alcover, Mar 10 2023, after Nathaniel Johnston *)
Formula
See A099352.
Comments