A099368 Twice Chebyshev polynomials of the first kind, T(n,x), evaluated at x=51/2.
2, 51, 2599, 132498, 6754799, 344362251, 17555720002, 894997357851, 45627309530399, 2326097788692498, 118585359913786999, 6045527257814444451, 308203304788622880002, 15712323016961952435651, 801020270560270951338199
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..584
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (51, -1).
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
Mathematica
LinearRecurrence[{51, -1}, {2, 51}, 15] (* or *) CoefficientList[Series[(2 - 51 x)/(1 - 51 x + x^2), {x, 0, 14}], x] (* Michael De Vlieger, Feb 08 2017 *)
Formula
a(n) = 51*a(n-1) - a(n-2), n >= 1; a(-1)=51, a(0)=2.
a(n) = S(n, 51) - S(n-2, 51) = 2*T(n, 51/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 51)=A097836(n). U-, resp. T-, are Chebyshev polynomials of the second, resp. first, case. See A049310 and A053120.
a(n)= ap^n + am^n, with ap:=(51 + 7*sqrt(53))/2 and am:=(51 - 7*sqrt(53))/2.
G.f.: (2-51*x)/(1-51*x+x^2).
Comments