This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099375 #35 Jul 23 2014 11:00:58 %S A099375 1,3,1,5,3,1,7,5,3,1,9,7,5,3,1,11,9,7,5,3,1,13,11,9,7,5,3,1,15,13,11, %T A099375 9,7,5,3,1,17,15,13,11,9,7,5,3,1,19,17,15,13,11,9,7,5,3,1,21,19,17,15, %U A099375 13,11,9,7,5,3,1,23,21,19,17,15,13,11,9,7,5,3,1,25,23,21,19,17,15,13,11,9 %N A099375 Sequence matrix for odd numbers. %C A099375 Riordan array ((1+x)/(1-x)^2, x). %C A099375 Inverse matrix is A101038. %C A099375 Row sums yield (n+1)^2. %C A099375 Diagonal sums yield sum{k=0..floor(n/2),2(n-2k)+1}=C(n+2,2)=A000217(n+1). Note that sum{k=0..n,2(n-2k)+1}=n+1. %C A099375 From _Paul Curtz_, Sep 25 2011. (Start) %C A099375 Consider from A187870(n-2) and A171080(n) %C A099375 1 + 1/3 - 4/45 + 44/945 - 428/14175 =1/(1 -1/3 +1/5 -1/7 ..= Pi/4)=4/Pi. %C A099375 For c(0)=-1, c(1)=1/3, c(2)=4/45, c(3)=44/945, c(4)=428/14175, %C A099375 c(0)/3 + c(1)=0, %C A099375 c(0)/5 + c(1)/3 + c(2)=0, %C A099375 c(0)/7 + c(1)/5 + c(2)/3 + c(3)=0. %C A099375 Hence a(n+1). Numbers are %C A099375 -1/3 + 1/3, 1=1, %C A099375 -1/5 + 1/9 + 4/45, 4=9-5, %C A099375 -1/7 + 1/15 + 4/135 + 44/945 44=135-63-28. (End) %C A099375 T(n,k) = A158405(n+1,n+1-k), 1<=k<=n. [_Reinhard Zumkeller_, Mar 31 2012] %C A099375 From _Peter Bala_, Jul 22 2014: (Start) %C A099375 Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array %C A099375 /I_k 0\ %C A099375 \ 0 M/ %C A099375 having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A208904. (End) %H A099375 Reinhard Zumkeller, <a href="/A099375/b099375.txt">Rows n=0..150 of triangle, flattened</a> %F A099375 Number triangle T(n, k)=if(k<=n, 2(n-k)+1, 0)=binomial(2(n-k)+1, 2(n-k)) %F A099375 a(n)=2*A004736(n)-1; a(n)=2*((t*t+3*t+4)/2-n)-1, where t=floor((-1+sqrt(8*n-7))/2). - _Boris Putievskiy_, Feb 08 2013 %e A099375 Rows start %e A099375 1; %e A099375 3,1; %e A099375 5,3,1; %e A099375 7,5,3,1; %e A099375 9,7,5,3,1; %e A099375 11,9,7,5,3,1; %e A099375 13,11,9,7,5,3,1; %o A099375 (Haskell) %o A099375 a099375 n k = a099375_row n !! k %o A099375 a099375_row n = a099375_tabl !! n %o A099375 a099375_tabl = iterate (\xs -> (head xs + 2) : xs) [1] %o A099375 -- _Reinhard Zumkeller_, Mar 31 2012 %Y A099375 Cf. A005408, A004736. A208904. %K A099375 nonn,easy,tabl %O A099375 0,2 %A A099375 _Paul Barry_, Jan 22 2005