cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099378 Denominators of the harmonic means of the divisors of the positive integers.

This page as a plain text file.
%I A099378 #24 Feb 16 2025 08:32:55
%S A099378 1,3,2,7,3,1,4,15,13,9,6,7,7,3,2,31,9,13,10,7,8,9,12,5,31,21,10,1,15,
%T A099378 3,16,21,4,27,12,91,19,15,14,9,21,2,22,7,13,9,24,31,19,31,6,49,27,5,
%U A099378 18,15,20,45,30,7,31,12,52,127,21,3,34,21,8,9,36,65,37,57,62,35,24,7,40,93
%N A099378 Denominators of the harmonic means of the divisors of the positive integers.
%H A099378 Ivan Neretin, <a href="/A099378/b099378.txt">Table of n, a(n) for n = 1..10000</a>
%H A099378 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OresConjecture.html">Ore's Conjecture</a>
%e A099378 1, 4/3, 3/2, 12/7, 5/3, 2, 7/4, 32/15, ...
%t A099378 f[n_] := DivisorSigma[0, n]/Plus @@ (1/Divisors@n); Denominator@ Array[f, 80] (* _Robert G. Wilson v_, Aug 04 2010 *)
%t A099378 Table[Denominator[DivisorSigma[0, n]/DivisorSigma[-1, n]], {n, 80}] (* _Ivan Neretin_, Nov 13 2016 *)
%o A099378 (PARI) a(n) = my(d=divisors(n)); denominator(#d/sum(k=1, #d, 1/d[k])); \\ _Michel Marcus_, Nov 13 2016
%o A099378 (PARI) first(n)=my(v=vector(n)); forfactored(k=1,n, v[k[1]]=denominator(sigma(k, 0)/sigma(k, -1))); v \\ _Charles R Greathouse IV_, Nov 01 2021
%o A099378 (Python)
%o A099378 from sympy import gcd, divisor_sigma
%o A099378 def A099378(n): return (lambda x, y: x//gcd(x,y*n))(divisor_sigma(n),divisor_sigma(n,0)) # _Chai Wah Wu_, Oct 20 2021
%Y A099378 Cf. A099377.
%K A099378 nonn,frac
%O A099378 1,2
%A A099378 _Eric W. Weisstein_, Oct 13 2004
%E A099378 More terms from _Robert G. Wilson v_, Aug 04 2010