A099401 Square root of a(n) contains the n-th Fibonacci number as a string of digits to the immediate right of the decimal point (excluding leading zeros).
10, 10, 5, 11, 21, 8, 124, 52, 54, 43, 24, 970, 297, 457, 467, 1520, 2516, 7269, 12414, 3804, 11048, 25020, 135635, 56389, 710228, 44151, 21082, 762684, 696414, 1085414, 6472621, 2979828, 15220551, 72130, 9934617, 79533387
Offset: 1
Examples
a(1)= 10 because sqrt( 10)= 3.(1)622... a(2)= 10 because sqrt( 10)= 3.(1)622... a(3)= 5 because sqrt( 5)= 2.(2)360... a(4)= 11 because sqrt( 11)= 3.(3)166... a(5)= 21 because sqrt( 21)= 4.(5)825... a(6)= 8 because sqrt( 8)= 2.(8)284... a(7)= 124 because sqrt(124)=11.(13)55... etc.
Programs
-
Mathematica
Do[x = IntegerDigits[Fibonacci[n]]; i = 1; l = {}; While[l != x, d = RealDigits[N[Sqrt[i], 100]]; l = Take[Drop[First[d], Last[d]], Length[x]]; i++ ]; Print[i-1], {n, 1, 36}] (* Ryan Propper, Aug 11 2005 *)
Extensions
Corrected and extended by Ryan Propper, Aug 11 2005